Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
29 (2026), No. 1, pp. 155 - 167 http://dx.doi.org/10.17777/pjms2026.29.1.011

Representing Finite-State Automata with
Generalized Nets: Simulation via OnlineGN

Angel Dimitriev!?

'Department of Bioinformatics and Mathematical Modelling,
Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences,

105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
e-mail: angel _dimitriev@abv.bg

2Faculty of Mathematics and Informatics,
Sofia University “St. Kliment Ohridski”,

5 James Bourchier Blvd., Sofia 1164, Bulgaria
e-mail: adimitriev@fmi.uni-sofia.bg

ABSTRACT: This article introduces a new method for simulating Finite State Automata and
Nondeterministic Finite State Automata by employing Generalized Nets. A detailed schema is
presented, illustrating how states and transitions can be directly represented as Generalized Net
places, transitions, and tokens. An example demonstrating how to simulate an FSA is provided
using the OnlineGN software.

Keywords and phrases. Generalized nets, Nondeterministic Finite State Automata.

1 Introduction

Non-deterministic finite automata (NFAs) are fundamental to formal language theory, but creating an
executable framework that can simulate one NFA and scale to coordinate entire sets of interacting NFAs
quickly becomes hard. Generalized Nets (GNs) offer a leaner alternative: their concurrent semantics
allow a single GN to capture every branch of an NFA and even to host several automata at once inside
one model.

In this article we introduce a direct translation from any NFA to an equivalent GN and prove that
one GN can simultaneously simulate any finite collection of automata while preserving the language of
each. The result highlights the efficiency of GNs and their practical value for large-scale, multi-process
systems.

2 A Brief Note on Generalized Nets

Generalized Nets (GNs) are recognized as a broad extension of Petri Nets (PNs) and their other variants
[1,2]. In this work, we employ a simplified version of GNs, incorporating only the minimal set of GN
components required for our model.

Each transition in this simplified GN is shown in Figure 2, and is formally defined by:

Z = <PI?PH7 R>7

where P’ and P” are finite, non-empty sets of places, and R is an index matrix (see [3]) composed of
predicate elements:



156

Angel Dimitriev

T

/
O o
PO oW

. :
P (O —— Op’é

Figure 1: Structure of a GN transition.

|pf .. P ... p»
I
R=
i Tij
j

Each element 7; ; is a predicate associated with the i-th input place and j-th output place (1 < i <
m, 1 < j <n). When r;; is evaluated to true, a token from p; moves to pf.
A simplified GN is then denoted by:

E= <A3K~,X~, ¢>

where A is the set of transitions of the form shown above, K is the set of GN tokens, X is the collection
of initial characteristics assigned to tokens upon entry, and & is the function that updates each token’s
characteristic as it transitions from an input place to an output place within a given transition.

3 Essential Concepts of Finite State Automata.

In this section, we introduce the fundamental concepts of finite state automata, including both deter-
ministic and non-deterministic variants. We begin by defining finite alphabets, strings (words), and
languages, and then present the formal definitions of deterministic finite automata (DFA) and non-
deterministic finite automata (NFA). We also discuss how an automaton accepts a word and how we
describe the language recognized by a finite automaton.

3.1 Finite Alphabets and Languages

A finite alphabet is a finite set of symbols, usually denoted by ¥. A string (or word) over ¥ is a finite
sequence of symbols from . The empty string (with no symbols) is denoted by €. A language L over X
is any set of strings over ¥, i.e., L C £* (£* is the set of all string with symbols from ¥).

3.2 Deterministic Finite Automaton (DFA)
A deterministic finite automaton (DFA) is a 5-tuple [4, 5]
A=(Q, %, 6, qstart, F),
where:
e (Q is a finite set of states.
e Y is a finite alphabet.

e 0:Q x X — Q is the transition function, which must be total (i.e., defined for every pair (g, a)
with ¢ € Q and a € X).

o Qstart € Q is the start state.



Representing finite—state automata with generalized nets: Simulation via OnlineGN 157

o F C Q is the set of accepting (or final) states.

Figure 2: Example of a deterministic finite automaton.

3.2.1 When Does a DFA Accept a Word?

Let @ = apay -+~ an—1 be a word over the alphabet . The DFA A accepts (or recognizes) « if there
exists a sequence of states qo, q1,- .., qn € @ such that:

* 4o = Gstarts
o 6(qiya;) = i1 for each 0 < i < n,
e g, €F.
Equivalently, we can use the extended transition function §* : @ x ¥* — @, defined inductively by
0*(q,e) =q and 6*(q,aa) =6(6*(q,a),a).
Then A accepts « if and only if 6*(gstart, @) € F.

3.2.2 Language of a DFA

The language recognized by the DFA A is
L(A) = {a e X" | Aaccepts a}.

3.3 Non-deterministic Finite Automaton (NFA)
A non-deterministic finite automaton (NFA) is a 5-tuple [4,6]:
N =(Q, 2, A, Gstart, I),
where:
e (@ is a finite set of states.
e Y is a finite alphabet.

o A: QXX — P(Q) is the transition function, which gives a set of possible next states for each
state-symbol pair.

o Qstart € Q is the start state.
o F C Q is the set of accepting (or final) states.

3.3.1 When Does an NFA Accept a Word?

Let o = agay -+ - a,_1 be a word. The NFA N accepts « if there exists:
o A start state ¢ € Qspart,
¢ A sequence of states qo,q1,--.,q, With ¢o = g,

such that for every i with 0 < i < n, the state ¢;+1 is in A(g;, a;), and finally ¢, € F. Equivalently, one
can define an extended transition relation or a function

A" P(Q)x X — P(Q)

and say that « is accepted if

A*(Qstarha) n F 7é @



158 Angel Dimitriev

Figure 3: Example of a non-deterministic finite automaton.

3.3.2 Language of an NFA

The language recognized by the NFA N is

L(N) = {a €X" | N accepts a}.

3.4 Comparison of Deterministic and Non-deterministic Automata

Even though DFAs and NFAs are defined differently, they recognize the same class of languages. Below,
we highlight some core differences and the well-known result that connects them:

3.4.1 Unique Computation Path (DFA)

A deterministic finite automaton has, for each state and input symbol, exactly one possible next state.
When processing an input string, the DFA follows a single, unique computation path from the start state
to a (potentially) accepting state.

3.4.2 Parallel Computation (NFA)

In contrast, a non-deterministic finite automaton may have multiple possible next states for a given
state-symbol pair. We can view the NFA as exploring all possible computation paths in parallel. If
any of these paths leads to an accepting state, the input is considered to be accepted. This branching
structure is often advantageous for making the design of an automata more simple.

3.4.3 Interpreting a DFA as an NFA

Every DFA can be trivially interpreted as an NFA. The transition function will produce a singleton set
of next states. Thus, DFAs may be interpreted as special cases of NFAs with a single possible next state
at every step.

3.4.4 Rabin—Scott Theorem and the Powerset Construction

An important theorem in formal language theory, established by Rabin and Scott [7], states that for
every NFA there exists an equivalent DFA that recognizes the same language. This equivalence is
typically demonstrated via a powerset (or subset) construction. Intuitively, the states of the new DFA
to correspond to subsets of the original NFA’s states, thereby capturing all possible non-deterministic
moves in a deterministic fashion.

3.4.5 Why NFAs Are Often Used First

In many theoretical applications, it is sometimes easier to design an NFA, due to its flexibility in allowing
multiple transitions. Once an NFA is specified, one can systematically convert it to a DFA if needed.



Representing finite—state automata with generalized nets: Simulation via OnlineGN

4 Representing Non-Deterministic Finite Automata Using Gen-
eralized Nets

As mentioned before, Generalized Nets (GNs) provide a flexible framework for simulating parallel pro-
cesses [1, 3], making them suitable for modeling how words are accepted by automata. In this section,
we demonstrate how a Non-Deterministic Finite Automaton (NFA) can be represented as a Generalized
Net. Since every Deterministic Finite Automaton (DFA) can be easily interpreted as an NFA (by viewing
each transition as producing a singleton set of next states), the same construction applies to DFAs with
minimal modification. Figure 5 shows an induced sub-automaton that we will use as an example later.

Figure 4: Induced sub-automaton with two arcs labeled ’a’ from the same state.

We construct the Generalized Net (GN) to capture all possible parallel computation paths of the
given Non-deterministic Finite Automaton (NFA). Each transition in the GN corresponds to a single
state in the automaton, and each place in the GN represents an arc (or transition edge) of the automaton.
We also introduce additional transitions and places as explained below.

Transitions

¢ One Transition per Automaton State. For every state ¢; in the NFA, we define a corresponding
GN transition Z;. Conceptually, this transition handles all movements from state ¢; to any of its
successors, as determined by the automaton’s transition function.

o Final Transition. Besides the transitions that map each state to its successors, we introduce a
special final transition Zfgpnq. This transition permits a token to exit the GN once the automaton
has accepted the input word. The final transition has multiple input places (each connected from
transitions corresponding to final states in the automaton) and a single output place that leads out
of the net, signaling acceptance.

Places

e Arcs as Places. Each arc (transition edge) of the original NFA becomes a corresponding place in
the GN.

o Input/Output Places in the GN. An arc from state ¢; to state g; in the NFA is represented
as an output place for the GN transition Z; and an input place for the GN transition Z;. This
ensures that a token moving through the net reflects a valid transition in the NFA.

o Places Leading to the Final Transition. For every final (accepting) state in the NFA, we add
an additional output place from the corresponding GN transition. This output place serves as the
input place for the final transition Zgnq.

o Initial Place. The GN contains a dedicated initial place (pstert) Where the initial token first
appears. This place is the input place for the transition that corresponds to the NFA’s start state.

¢ Final Place. The GN contains a dedicated final place, which is the single output place of the final
transition Zgnq. Tokens reaching this place represent successful acceptance by the automaton.
Tokens and Their Characteristics

Within a GN, the active entities traveling between places are called tokens. In this construction, each
token corresponds to a distinct potential computation path in the NFA.

159



160

Angel Dimitriev

¢ Word Remainder as a Characteristic. Each token carries, as its characteristic, the remain-
ing (unprocessed) portion of the input word — it is called "word". Initially, the token’s "word"
characteristic is the full input word w = agay ... a,_1.

¢ Characteristic Functions of Places. Each output place for a transition in the GN has a
characteristic function which updates the token’s remaining input word. When a token moves
through an output place corresponding to a non-initial state, the first symbol of the word remainder
is removed (i.e., one symbol is considered “read”). However, for the output place of the transition
corresponding to the initial (start) state, no symbol is removed when a token first arrives from the
GN’s initial place.

o Parallel Paths. If the NFA branches into multiple successor states from the same configuration,
the GN splits the token to multiple tokens (each carrying an identical current word remainder).
These tokens proceed in parallel along different transitions.

« Empty String. When a token’s characteristic becomes the empty string, it indicates that the
entire input word has been processed. If the token is on a place leading from (or belonging to) a
final state, it may proceed to the final transition Zg,, and exit the GN, signifying acceptance of
the word.

Illustration of Token Movement

Consider the example in Figure 4, where an NFA state has two arcs labeled ‘a’ going to different states
(e.g., g2 and ¢3). In the GN, the token splits into two tokens, each with the same remaining input.
Suppose the original word is aa, with o € 3*. After the split, both tokens carry the same remainder aa.

Figure 5: GN corresponding to an NFA from Figure 4 with two active cores BEFORE a step.

For place names, we use the convention porigin-destination- 10 the subsequent move, the tokens advance

to pa—y and p3_,. The characteristic functions of these places remove the first letter of the word; thus
both tokens will carry the updated remainder a:

Figure 6: GN corresponding to an NFA from figure 4 with two active cores AFTER a step.

Index Matrices

In this section, we describe how to construct the index matrices of the generalized net (GN) that sim-
ulates a given Non-Deterministic Finite Automaton (NFA). Recall that an NFA is defined as a 5-tuple
(Q7 E: 57 Gstart, F)

Key Predicate Definition

We introduce the following predicate used within the index matrices:

S.y) The characteristic “word” of the token is aw (a € X, w € %),
T,
Y and ¢, € 0(¢z,a).



Representing finite—state automata with generalized nets: Simulation via OnlineGN

Here, g, corresponds to the NFA state associated with the input place p, in the GN transition, and
qy is the state associated with the output place p,. The predicate S(z,y) is thus true precisely when
the token at place p, can move on input a to state ¢, in the NFA, with the characteristic word updated
from aw to w.

Transition Z; for a Non-Final State ¢;. For each state ¢; € Q, let Input(¢q;) be the set of NFA
states that have a direct transition (arc) into ¢;, and let Output(g;) be the set of states to which there is
a transition (arc) from g;. In the GN, these will correspond respectively to the input and output places
of the transition Z;. Formally, the index matrix of Z; has rows indexed by the places corresponding to
Input(g;) and columns indexed by the places corresponding to Output(g;).

Hence, the index matrix for the transition Z; is:

‘ pi—y where ¢, € Output(g;)
ps—i where g, € Input(g;) ‘ S(x,1)

Initial State Transition with Additional Place. For the transition that corresponds to the start
state, we introduce an additional place psary from which the simulation begins. Any token in pgpart
can move (unconditionally) into one of the places that correspond to Oulput(gsiar¢). Thus, in the index
matrix for the start-state transition, there is an extra row for psta,t, with all entries set to True:

Pstart | True True ... True

Additional Output Place for Final States. For each transition Z; that corresponds to a final state
q; € I, we introduce an additional output place p; ana) that serves as an input to the ultimate “accepting”
transition Zgna. The movement from the final-state transition into p; final is always permitted (i.e., the
predicate is True). Consequently, for each such Z;, the index matrix has an extra column corresponding
t0 P; final, Where each entry (in that column) is set to True:

Di final

True

True

Final Transition (Zgna1). Lastly, we define the global final transition Zgy,. This transition takes
tokens from the places py anal, where ¢, € F', and moves them to a single “accepting” output place Pgpal.
In order for the NFA simulation to accept the input word, the characteristic word of the token must be
empty. We therefore use the predicate:

E <= the characteristic "word” of the token is empty.

Thus, the index matrix for Zg,a becomes:

‘ Pﬁnal
prinal (€ F) | E

If F is satisfied, the token moves into Pgyaj, indicating acceptance of the original input word by the
simulated NFA.

Theorem 1. Every non-deterministic finite automaton (NFA) can be represented by a corresponding
Generalized Net.

161



162

Angel Dimitriev

Proof. We have demonstrated a procedure for constructing a generalized net (GN) that simulates a
given nondeterministic finite automaton (NFA). The procedure begins by creating a transition for each
state of the NFA and introducing places corresponding to each incident arc of that state. By applying
Theorem (Completeness of GN Transitions), which states that every generalized net is the union
of its constituent transitions, we establish that the union of these per-state transitions yields a fully
formed GN [1,3].

Specifically, we combine the initial special place, the set of constructed state transitions, and a final
transition whose output place corresponds to an accepting configuration. In this way, any token starting
in the initial place and ending in the final place set corresponds precisely to the acceptance of the input
word in the original NFA. Hence, the constructed GN accurately reflects the operation of the NFA,
thereby confirming the correctness of our construction.

O

5 Formal Flow and exapmle

5.1 Flow in the Generilized net

1. Initialization. A single token (core) enters the GN with its characteristic set to the full input
word a. This token is placed in the input place of the GN that corresponds to the start state of
the NFA.

2. State Transitions. At each GN transition Z,, the predicate logic checks whether the token’s next
input symbol matches a valid transition from ¢ to another state ¢’. If so, the token moves to the
corresponding place (which represents the arc ¢ — ¢’). The characteristic string for that token is
updated, removing the symbol just consumed.

3. Branching. If there are multiple valid transitions from ¢ (reflecting the non-deterministic nature
of the NFA), multiple tokens can emerge from Z;, each with the same characteristic but leading
to different subsequent transitions in the GN.

4. Acceptance. If a token has an empty string in its characteristic and is in (or can move into) a
place corresponding to a final NFA state, it routes to the final transition Zgnq. From there, it
exits the GN, indicating successful acceptance of the input word.

By following these steps, the GN effectively simulates all possible computation paths of the NFA in
parallel. Hence, the word is accepted if and only if at least one token reaches and passes through the
final transition. This modeling approach highlights the versatility of Generalized Nets in simulating not
only purely deterministic mechanisms (DFAs) but also systems requiring parallel exploration of states
(NFAs).

5.2 Detailed example for an NFA represented as a Generilzed Net
Below is a detailed example of a GN for an NFA:

Figure 7: Example NFA with two final states, g3 and g5.

The language of this automaton can be represented by the regular expression

a(bb)* (b+ b a>,



Representing finite—state automata with generalized nets: Simulation via OnlineGN 163

It is non-deterministic because from state go there are two arcs labeled ‘b‘.
In the next figure, the generalized net that simulates this automaton is shown:

Z4 Zs Zfinal

Z2
paért P1_2 P34 P45 P5— Sm szn

As described, we have one transition for each state (Z1,22,7Z3,74,7Z5) and one additional final
transition (Zgnal).

6 Simulating Multiple NFAs with a Single Generalized Net

In this section, we demonstrate that a finite collection of NFAs can be represented by a single Generalized
Net. This representation facilitates the simultaneous verification of input strings across multiple NFAs
through a single Generalized Net.

Theorem 2. Every finite set of NFAs can be represented by a single Generalized Net.

Proof. We showed that any single NFA can be simulated by a corresponding Generalized Net. Moreover,
according to a theorem, if F; and Fs are Generalized Nets, then their union F; U Es is also a Generalized
Net [1]. Consequently, by taking the union of the Generalized Nets corresponding to each NFA in the
finite set, we obtain a single Generalized Net that collectively represents all of the NFAs in question. O



164

Angel Dimitriev

7 Simulating a single NFA with OnlineGn

In this example, we introduced an NFA and constructed a corresponding GN to recognize the language
containing the word abbba. We now demonstrate how to run this GN in the OnlineGn tool. In the
simulation, we use a slightly different notation (since lower indices are not supported). For instance, g;—;
is written as qi-j.

Simulation: Make a step Full simulation Edit positions
State Show all tokens m Step logs
Save: Export to file Import Currently imported file: NFA-test.json

Current step: 0

p-fin

p3-fin

p3-2

Figure 8: Initial GN setup with one token in the start place (p-start).
As shown in Figure 8, the GN begins with a single token located in the start place, denoted by
p-start. The characteristic of this token is the full word abbba, indicating that the entire input is yet

to be processed.

Tokens at p-start

Name: NFA-token
Position id: p-start
Priority: 1

Chars:

{

"word": "abbba"

Figure 9: Token at p-start with characteristic abbba.

In the first simulation step, the token transitions from p-start to the place p1-2 (see Figures 10
and 11). Note that the token’s characteristic remains unchanged after this initial move because the



Representing finite—state automata with generalized nets: Simulation via OnlineGN 165

processing of the input symbols (i.e., removing characters) has not yet begun.

Simulation: Make a step Full simulation Edit positions
State Show all tokens m Step logs

Save: m Export to file Import Currently imported file: NFA-test json
Current step: 1
Z1 ZZ Z4 5 Z-fin
w w h 4 A 4
p-start pl-: p2-4 p4-5 pa-fin p-fin
p2:3 pd-4
> - 0 > L >
Z3
v
p3-fin
p3-2

Figure 10: After the first step, the token has moved to p1-2.

Tokens at p1-2

Name: NFA-token
Position id: p1-2
Priority: 1

Chars:

{
"word": "abbba"

Figure 11: Zoomed view of the token at p1-2, still carrying abbba.

Subsequent steps in the GN correspond to consuming each character in the word abbba and following
the corresponding transitions. Eventually, once all characters have been consumed, the token is routed
to the final place, p-fin, as shown in Figure 12.



166

Angel Dimitriev

Simulation: Make a step Full simulation Edit positions
State: Show all tokens m Step logs

Save: m Export to file Import Currently imported file: NFA-test.json
Current step: 6
Z5
v
p4-5 p5-fin
p4-4
p3-fin
p3-2
>

A

p-fin

Figure 12: The token has reached the final place p—fin.

By the time the token arrives at p-fin, its characteristic is the empty string, indicating that the entire
word abbba has been recognized (or “accepted”) by the GN/NFA. This final state signifies successful

completion of the simulation.

Tokens at p-fin

Name: NFA-token
Position id: p-fin

Priority: 1
Chars:
{

"word": "M
h

Figure 13: The token’s characteristic becomes the empty string upon acceptance.

This series of steps demonstrates how the OnlineGn tool can be used to visualize and track the
movement of tokens and the progression of their characteristics (the input symbols) through a generalized

net that models an NFA.

8 Conclusion

In this paper, we presented how Generalized Nets can be employed to simulate both deterministic and
non-deterministic finite automata. By associating each automaton state with a transition in the GN



Representing finite—state automata with generalized nets: Simulation via OnlineGN

and representing arcs as places, we effectively capture all parallel computation paths that an NFA might
follow. The token-based architecture of Generalized Nets allows for easy modeling of branching and the
simultaneous exploration of multiple states. This approach showcases the flexibility and robustness of
GNs in formal language theory and automata-based computations, paving the way for further applications
in areas where parallel processing and concurrency play a significant role.

References

(1]
2]

3]

4

[5
(6]
(7]

Atanassov, K. Generalized Nets. World Scientific, Singapore, 1991.

Alexieva, J.; Choy, E.; Koycheva, E. Review and bibliography on generalized nets theory and
applications. In A Survey of Generalized Nets; Choy, E., Krawczak, M., Shannon, A., Szmidt,
E., Eds.; Raffles KvB Monograph No. 10; Raffles Publishing House: Sydney, Australia, 2007; pp.
207-301.

Atanassov, K. On Generalized Nets Theory. ”Prof. Marin Drinov” Academic Publishing House,
Sofia, 2007.

Hopcroft, J. E.; Motwani, R.; Ullman, J. D. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 3rd edition, 2006.

Kozen, D. C. Automata and Computability. Springer, 1997.
Papadimitriou, C. H. Computational Complexity. Addison-Wesley, 1994.

Rabin, M. O.; Scott, D. Finite Automata and Their Decision Problems. IBM Journal of Research
and Development, 3(2):114-125, 1959.

167



