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Abstract: The mathematical proof for establishing some new Ky-Fan inequalities
involving centroidal mean and invariant centroidal mean, including a few well-known
means for the arguments lying on the paths of triangular wave function (linear),
new parabolic function (curved) and a remark on the well-known parabola y =
—2(z — 1/2)2 + 1/2 over the interval (0, 1) are discussed. The results represent an
extension as well as strengthening of Ky-Fan inequality.
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1. INTRODUCTION

The Handbook of Means and Their Inequalities, by Bullen [1], gave tremendous
work on mathematical means and the corresponding inequalities involving famous
means. The authors in [3, 4, 5] discussed about the relations between the well-
known means and series as well as their extensions. The generalization of the means
is discussed in [3, 12]. Relevant to this paper, the authors in [9, 11, 13] established
the Ky Fan inequalities. In [0] authors introduced new homogeneous function; as
an application, inequalities involving means are obtained. In [7, 8, 10] authors
provided the simple way of establishing inequalities and their improvements. The
set of arbitrary non-negative real numbers z; € (0,1] and 2} = (1 — ;) € [3,1) is
represented as a function in the form given by [1].

y= x4, O<xl§%
11—z, %§$i<1
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The following are the few definitions of means extracted from the above survey pa-
pers. For given n arbitrary nonnegative real numbers x1,x9,--- ,z, € (0, %]7 the
standard notation for the unweighted arithmetic, geometric, and harmonic means
are represented by A,,, G, and H, are respectively, given by

1 — - n
Av=12 e Go=]lvw and Hi=5—
=1 i=1 Z =
. y'L
i=1
Also, the arithmetic, geometric and harmonic means of the set of elements 1 —;,1—
Y2, , 1 — yp represented by A}, G, and H] are respectively given by

1 L n
A =23 0-w) G=I[VTmw o H =
i=1 i=1

Ky-Fan initiated the popular inequalities that affected them and later was strength-
ened by several authors, namely Rooin [11], Sandor and Trif [13]. The inequalities
obtained in this paper have numerous applications in the study of majorization prob-
lems [2]. This work motivates us to develop two double inequalities in this paper.

For two positive arguments e and f, the following means respectively called the
arithmetic, geometric, harmonic, centroidal, and invariant centroidal means.

For all e, f € (0, %]

_ /_(176)+(1*f)
A= 5 and A = — (1.1)
G=+ef and G =/ (1-e)(1-Y) (1.2)
_ 2f ;o 2(1=e)(1-f)
H_e+f and H R S (1.3)
_2Alef+ ) 20 —eP+ (o)1= )+ (1)
“="Serp M O= M1 —)+ (1 f) (14)

o Befletf) e 30— pl1-)+ (1 f)
= @regrm M (@) o= + = =D+ =17

The motivation of the work carried out by the eminent researchers and discussion
with experts results in the study of a function that is symmetric about the point
T = % and which is similar to a parabolic curve in nature, given as follows:

. 2302, O<x§%
V= 2(1 — )2, i<z<1
and
{y**:—2(m—1/2)2+1/2, 0<z<1

The functions y, y* and y** are graphically represented as shown in the following
figure:
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S v o1
“ — }**——Z(x—z) *3 0=x=1
1
V=X nggf
. 1
2] y = 2x" Dgxgz
0z y=1-—x EEJCE].
1
a1 y+=2(1—2x)* ssx=<1

The corresponding arithmetic mean A*, geometric mean, mean G* and harmonic
mean H* are considered for the arguments lying on the curved path of f*(y) and
some important inequality chains involving them are established.

1 L n
== 2%}, =[I¢ze  amdom=
i=1 =1

and
n

iZQ(l —e)?, (G H Y2r(l—e)? and (H) = n#
=1 1;1 2(1je )2

—
b
S %
~
Il
|

For two positive arguments e and f, the following means respectively called the
arithmetic, geometric, harmonic, centroidal, and invariant centroidal means.

For all e, f € (0, %]

2e2 4 22

AT=—

and (A*) =

G* =R and  (GY) =V[2(1 - )21 - [)?] (1.7)

4e? f2 , 41 —e)?(1—f)?
- ﬁ and  (H*) = (1(_ 6)2)+((1 _f})2 (1.8)
A R Y ne A=)t (1= P = 1)+ (1= 1))
C=gerpy o (@)= S0 =P+ (- /)7
(1.9)
A BERE D) et 81 M- P00+ (1
() = servars mmd () = g azgra-Fra-m

(1.10)
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2. SOME INEQUALITIES FOR THE ARGUMENTS LIE ON THE CURVE Yy

This section provides the analytical proof to develop a new Ky-Fan inequality

chain.
Theorem 2.1. For all e, f € (0, %] ande =1—e,f =1—f¢€ [%, 1), then
G A
5 < =7
G ~ A
Proof. From egs. (1.1) and (1.2), one can write easily:
/ / 2 2 - - 2
(AG')? — (GA')? = (etlf) (tef—e—p)-2me=I" 5 It
which is equivalently,
/ ! _1
(AG)? = (GA) = — [(e = ))(e+ f = 1)] (2.1)

For all e, f € (0, %], implies that 0 < e < % and 0 < f < %,
Equivalently, 0 < e+ f <1, thatise+ f—1<0

Thus,
(AG) ~ (@A) = 7 [(e~ e+ f~1)] 20 (2.2)
That is,
(AG') — (GA') >0 (2.3)
Hence,
(G A G A
O
Theorem 2.2. For all e, f € (0, %] implies that 0 < e < % and 0 < f < %, then
G C
= < =
G —C
Proof. From eqs. (1.2) and (1.4), one can write easily:
S b R Lo [ R D I
(GCP = (6P = )| ———
2 2112
—{W} (I+ef—e—f) (2.5)
On simplification, eqn. (2.5) takes the form:
(GC’)Q _ (CG’)Q _ 4(6 - f)2(€ +/- 1) [A] (2.6)

e+ f1P2—e—f)?

where,
A= et + 1 =463+ 5212 — 112 f + 4e® + def? + 4e3 f — 1lef? + Tef +4f% — 4f?]
on regrouping, the terms A can be rewritten as:

A== ) +4*(f — (e~ 1)+ +f* e~ 1) + Tef(1—e)(1 - f)]
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Again, for all e, f € (0, 3], implies that 1 —e > 0,1 — f >0,e—1<0,f—1<0,
e+ f—1<0and (e — f)? >0, based on this the value of A > 0.
Thus,

(GC')? = (CG)? >0 or GC' —CG >0 (2.7)
Hence,
(G C G C
A =< — < = 2.
GG(G, C,)_O or <G'_C'> (2.8)
O
Theorem 2.3. For alle, f € (0, %] implies that 0 < e < % and 0 < f < %, then
L<S
A~ C

Proof. From eqs. (1.1) and (1.4), one can write easily:

' v (et Y [2A0 -+ (A —e)1 - f)+ (1 - f)
a0 -cd = ()| 32-cf) ]
20 +ef+f2] (2—e—f
-t ) (29
On simplification, eqn. (2.9) takes the form:
' o (e=fPe+f-1)
AC —CA =
e+ f)2—e—1f)
For all e, f € (0, %}, implies that e + f — 1 < 0 and (e — f)? > 0, based on this the
value of AC" — CA" <0.

(2.10)

Hence,
(A C A _C
)< — < — .
AC(A, C,)_O or <A'_C'> (2.11)
O
Theorem 2.4. For all e, f € (0, %] implies that 0 < e < % and 0 < f < %, then
A O
A (C)y

Proof. From egs. (1.1) and (1.5), one can write easily:

o e (etf 31— e)1— 2 —c—f)
A9 ~(@ )A‘( 2 )L[(le)wle)(lf>+<1f>2]]

gt () =

On simplification, eqn. (2.12) takes the form:
—=3et+f)2—e—flle—f*e+f-1)

(€ +ef+A)A—e?+(1-e)1-f)+ (1= f)

For alle, f € (0,%], implies that e+ f —1<0,2—e—f >0, (1—¢€)(1—f) >0 and

(e — f)2 > 0, based on this the value of A(C?) — (CHA > 0.

Hence,
A(ch (% - %) >0 or (& < %) (2.14)

A(CY —(CHA = I (2.13)
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O
Theorem 2.5. For all e, f € (0, %} implies that 0 < e < % and 0 < f < %, then
c? G
< —.
(e
Proof. From egs. (1.2) and (1.5), one can write easily:
A2 (rd N2 31-e)l-fl2—e—f) 2
(GO~ (O =) g ot = 77
3efle+f) 17
- {W} (I4+ef—e—f) (2.15)
On simplification, eqn. (2.15) takes the form:
ch/Q_CdG’QZ 9(€f)(].+€f—€—f) A
(e 4[(1—6)2+(1—€)(1—f)+(1—f)2]2[€2+6f+f2]2( [ ;]
2.16

where,
Ay =—(e—f)2e+f-1]A] (A is given in eqn.(2.5))

For all e, f € (0, %], implies that e + f — 1 < 0 and (e — f)? > 0, based on this the
value of Ay > 0.

Thus,
(GECH)? = (iG>0 or (G(CYH)—(CG)>0 (2.17)
Hence,
Coav (G Cl C G
G'(0h (? - W) >0 or (W < 5) (2.18)
O

Theorem 2.6. For all e, f € (0, %] implies that 0 < e < % and 0 < f < %, then

d
o
©4y — H
Proof. From egs. (1.3) and (1.5), one can write easily:

Qef){ 31-e)1-f2—e— /) ]

HCY —(CHH = (

Py B S IR s R S Ry )
[ Befletf) ] (20-e0 -
{2[62+ef+f2]}( R ) (2.19)

On simplification, eqn. (2.19) takes the form:

_Bef(Ltef —e— ) (~(e— [Pet [~ 1)

HCY — (cHH' ~ (2.20)

where,

V=(e+NI-e)?+A—-e)1 =+ A2’ +ef +f2-e~f)>0
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Foralle, f € (O,%]7 implies that e+ f —1 <0, 1 +ef —e— f > 0and (e — f)? > 0,
based on this the value of H(C?) — (CHH' > 0.

Hence, oy ( L % > 20 o (% < g) (2.21)

O

Theorem 2.7. For alle, f € (0, %} implies that 0 < e < % and 0 < f < %, then

o < H G A _C

(cay =
Proof. The proof of Theorem (2.7) is established by combining the results of the
Theorems (2.1) to (2.6). O

3. SOME INEQUALITIES FOR THE ARGUMENTS LIE ON THE CURVE y*

In this section, the analytical proof of the inequality chain of the form (g:), <

5 < g < % < g is provided.
Theorem 3.1. For alle, f € (0, %} implies that 0 < e < % and 0 < f < %, then
A _C
x=c
Proof. From eqs. (1.6) and (1.9), one can write easily:
A1 —e)' + (1 —e)*(1 - f)> + (1 - f)"]
3(1—e)?+(1-f)?
4,22 g4
- [%} (1-e?+1-1?) (3.1)
On simplification, eqn. (3.1) takes the form:

AC' —CA = (& + f?) {

AC —cA =2 —
3(A—e)? + (1= f)2)[e* +e2f2 + f4]

where,
A= () [(1= ) + (1= eP(1= 1)’ + (1~ f)Y]
— ((1—6)2+(1—f)2)2 [e4+e2f2+f4]
Ay =(e~ [ (et f-1@ef—e- ) —e+ =)
Foralle, f € (0, %], implies that e+ f—1 < 0, e2—e+f2—f =e(e—1)+f(f—1) <0,

2ef —e—f=ef—etef—f=e(f—1)+ fle—1)<0and (e — f)? > 0, based on
this the value of AC" — CA" < 0.

Hence,
(A C A C
Ac (L -2 )< Z< = .
C<A’ C’)—O or (A"C’) (3:2)
O
Theorem 3.2. For all e, f € (0, %} implies that 0 < e < % and 0 < f < %, then
ct H
(cdy = H
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Proof. From egs. (1.8) and (1.9), one can write easily:
’ / 4e? f2 31—e)?(1—f)*A—e)+ 01— f)?
e~ et = (575) o noora e s o)

(Y [ 5

T+ e+ 70 [T-ar+ (- 1

On simplification, eqn. (3.3) takes the form:
e’ f2(1 —e)*(1 — f)?

Vi

H(CY —(CHH =

[As] (3.4)

where,
Vi = (@) (=) +(1=e)* (1= )+ (1= N (e + 24 ((1-e)*+(1- 1)) > 0
By= (L=’ + 1= ) (' +f+ 1)
— (@) At A==+ (1= )]
Ag=—(e— e+ f-1)Q2ef—e—f)—e+ P f)
Foralle, f € (0, %], implies that e+ f—1 < 0, e2—e+ f2—f =e(e—1)+f(f—1) <0,

2ef —e—f=ef—etef—f=e(f—1)+ fle—1)<0and (e — f)? > 0, based on
this the value of H(C%)' — (CH)H > 0.

Hence,
/ ( H cd cd H
H (CH — = — | > .
@ (7 -tem) >0 o« (@ <ir) &
0
Theorem 3.3. For all e, f € (0, %} ande =1—e,f =1—f¢€ [%, 1), then
G A
- < =
G — A

Proof. From egs. (1.6) and (1.7), one can write easily:
(AG) = (GA) = (& + 2 [4(1 = ) (1 = f)*] = 4’ F*[(1 = e)* + (1 = f)°P?
Equivalently,
(AG)? — (GA)? = ~4(e = )’ e+ [ = 1)(2ef —e = ) —e+ [~ ])
For alle, f € (0, %], implies that e+ f—1 < 0, e2—e+ f2—f =e(e—1)+f(f—1) <0,

2f—e—f=ef—etef—f=e(f=1)+ fle—=1) <Oand (e~ f)* > 0.
Thus,

(AGY? —(GA)Y? >0 (3.6)
or / /
(AG)—-(GA) >0 (3.7)
Hence,
(G A G A
O

Theorem 3.4. For all e, f € (0, %] ande =1—e,f =1—f¢€ [%, 1), then
H G
HI — G/ .
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Proof. From eqs. (1.6) and (1.7), one can write easily:
4€2f2
e2 +f2

41-e?1- 21"
1—e2+(1-f)?

2
(HC Y — (GH')? = ( ) 41— (L~ [ — 4P

Equivalently,

64(c—f)*(e+f—1)Ref—e—f)(—e+ f*—f)
@+ 22 [(1—e+(1- )2

For alle, f € (0, %], implies that e+ f—1 < 0, e2—e+f2—f =e(e—1)+f(f—1) <0,

2ef-c—f=ef—ctef—f=e(f—1)+fle—1)<0and (¢~ ) >0.
Thus,

(HG')? - (GH')* = —

(HG')? = (GH)? <0 (3.9)

. (HG')— (GH') <0 (3.10)
Hence,

HG <g g)ZO or <gzg> (3.11)

0

Theorem 3.5. For all e, f € (0, —] implies that 0 < e < 2 and 0 < f < 2, then

o G A C
< < =< =< =
(cdy — -G Ao
Proof. The proof of Theorem (3.5) is established by combining the results of the
Theorems (3.1) to (3.4). O

Theorem 3.6. For all e, f € (0, —] implies that 0 < e < 2 and 0 < f < 2, then

s _ (G _HGA _GG)? _HGA _(G) :
G3 < ( < < < <~ < (G)3.

= ety = o = e = aen = oen =@
Proof. The proof of Theorem (3.6) is established by combining the results of Theo-
rems (3.1) to (3.4), as follows. It is well known fact and easy to prove that:

A G H C c?
— <1 — <1 ;< 1; — <1 — <1 3.12
A~ G H C (C9) ( )
and the well-known identity states that:
G? = AH (3.13)

Based on egs (3.12) and (3.13), the following are holds:
GP=AGH; and (GYP=AGH o G<(G) and AGH<AGH

(3.14)
Using the eqn (3.12), the inequality of the Theorem (3.5) becomes;
d
o< o< 8 20y
@y ~H —G ~ A=

Further, simplification provides;
(CHH'G'AC < (CWYHGAC <(@clYH GgA'C
<(CHYH'GAC < (CHHGAC<(CHYHGAC
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Using the eqn (3.14) leads to the following:
(CHHGAC < (CYYH GA'C'

Hence,

GYY HGA GGY HGA (G) ,
< < < <

(
&= 2eny = oen = oed < oen S oen =@

IN

O

Remark 3.7. For the well-known parabola y = —2(x — 1/2)% + 1/2 over the interval
(0, 1), the ratio of means A to A’; G to G'; H to H'; C to C’; and C? to (C?)
for the arguments e, f € (0, %] ande =1—e f =1—f¢€ [%71) are equal to
1. Hence, no interesting results were obtained. It is also observed that y and y*
are continuous functions but not differentiable, however the y** is continuous and
differentiable function.

4. CONCLUSION

In this paper, the Ky-Fan inequalities involving invariant centroidal mean, har-
monic mean, geometric mean, arithmetic mean and centroidal mean are established
by providing the analytical proof. The results are verified by using the software
Wolfram Alpha.
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