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ABSTRACT. In this paper, we define some continued fractions u(q), v(q), U(q),
V(q) of order twelve, and we derive some modular relations involving these
continued fractions and some of Ramanujan’s theta functions. We also establish
some dissections for these continued fractions, and we found two integral rep-
resentations for U(q) and V' (g). Moreover, we obtain a relation between U (q),
V(q) and Ramanujan’s cubic continued fraction G(q).
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1. INTRODUCTION AND PRELIMINARY RESULTS

All through the paper, we use the standard g-product notation

((1; Q)O ::17
n—1
(@) :=][(1—ad®), n=>1
k=0
and
(a;q)oo := lim (a;q)n, g < 1.
n—oo

Ramanujan’s general theta function is defined by
oo
fla,b) =Y a2y D2 gp) < 1, (1.1)
n=-—o00

The well-known Jacobi triple product identity [5, p. 35, Entry 19] in Ramanujan’s
notation is

f(a,b) = (—a;ab)oo(—b; ab) oo (ab; ab) .
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The three special cases of (1.1) are [5, p. 36, Entry 22]

_ 7)o (4% 4%)oo
o= n_z_ooq pCTo e (12
n(n+1)/ 7)00
U(q) = Zq G (1.3)
and
F(=q) =f(=¢,—=¢") = > (=1)"¢"*" D = (¢;¢)o (1.4)
Define

X(a) = (=4:¢")oo
The following lemma provides transformation formulas for the function f(a, b):
Lemma 1.1. [5, p. 46, Entry 30 (ii) & (iii)] We have
f(a,b) + f(=a,=b) = 2f(a’b,ab’),
fla,b) = f(—a,=b) = 2af(b/a,a’?).

Adding the above two equations, we obtain

f(a,b) = f(a®b,ab®) + af(b/a,a®b?). (1.5)
The Rogers-Ramanujan functions are defined by
[ee) qn2 e} qn2+n
G(q) := and H(q) := , (1.6)
@ ,;, (¢ @)n @ nz:% (¢ D)n

These functions have elegant product forms, now famously known as the Rogers-
Ramanujan identities, initially discovered and proved by L. J. Rogers [15] and then
rediscovered by S. Ramanujan [14, pp. 214-215]:

2

q" 1

Q
=
i
Mz

1.7

n=0 (q Q) (Qa q5)oo(q4§q5)oo’ (L.7)

Z:D n 24n 1 y

(q) . n=0 (q q q q ) (q3;q5)oo ( : )

The Rogers-Ramanujan continued fraction R(q) is defined by

H(qg) ¢ ¢
)5 _ q
R(q) :==q° == N

2 3
" T T gl < 1
Glg) 1 +1+1+ 1+ ’
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and first appeared in a manuscript by L. J. Rogers [15] in 1894. This R(q) has
many representations, for example it can be written in terms of infinite g-products
as follows:

15 (0% 6%)o0 (43 6°) oo

(4% %) (0% )00
The identity (1.9) has been proved by both Rogers [15] and also discovered by S.
Ramanujan [12, Vol. II, Chapter 16, Section 15]. On page 50 of [11], Ramanujan
established 2- and 5-dissections of R(q) and for 1/R(q), see [4, 7].

On page 365 of his ‘lost’ notebook [13], Ramanujan recorded five identities
involving R(+q), R(¢?), R(¢®), R(¢") and R(q’) and in his first letter to G. H.
Hardy [11, p. xxvii], Ramanujan gave the first non-elementary evaluations of R(q),
namely R(e ?") and R(—e™ ™).

Ramanujan [13, p.46] claimed that

_ 1 - 5 —25-..
Rig) = Y2 1exp<(_1/5)/ (- 00— @)7

R(q) = ¢ (1.9)

2 (1—t5)(1—t10)"‘ t
where 0 < g < 1 and it was proved by G. E. Andrews [4].
Ramanujan [13, p.366] studied the continued fraction
Gla) = q1/3 i+ P P
' 1 + 1 -+ 1 + 1 +

which is known as Ramanujan’s cubic continued fraction. He guaranteed that there

lq| <1,

are many results of G(¢) which are undifferentiated from those of R(q).
Motivated by Ramanujan’s theory for these continued fractions, many other con-
tinued fractions have been discovered and studied. Ramanujan [12, 13] recorded
many fascinating g-continued fractions and some of their explicit values. For in-
stance, we have [5, p. 21, Entry 11].
Entry 11. Suppose that either ¢, a and b are complex numbers with |¢| < 1 or
q, a and b are complex numbers with a = bg"" for some integer m. Then

(=3 @)oo (b5 @)oo — (45 @)oo (b5 @)oo
(_a§ Q)oo(b§ Q)oo + (a; Q)oo(_b; Q)oo

_a—b (a—bg)(ag—b) gla—b¢*)(ag®—b)
1—q+ 1—¢3 + 1—¢° +

(1.10)

The above identity provides a continued fraction expansion for the quotient of two
specific g-products.
Setting ¢ — ¢°, a = ¢* and b = —q in (1.10), we obtain

u(g) = Wt D PO+ +dY U+ 44T
¢, 1-¢ ,  1-¢5

107



108

N. A. S. Bulkhali, Channabasavayya, D. Ranganatha and M. S. Surekha

where

(—¢% %) ( 0*)oc = (60%) 0 (43 %) 0
(=% ¢*)oo (=41 ¢*) oo + (6% ¢%) o0 (¢ ¢°) oo
Again, setting ¢ — ¢ a=q*and b =—¢ tin(l. 10) we obtain
o) = A+ ) a1+ )1+ 1L+ a)1+1)
q): - N 1—¢° N 1—ql5 e

u(q) =

)

(=" a*)oo(=a7" ¢%) o0 = (% 6% (0"5 %)
(0% ¢*)oo (=071 6%)o0 + (0% ¢%) o0 (071 ¢%) 0
With the help of Lemma 1.1, we can rewrite u(q) and v(q) as follows:
u(q) _ f(q7 q2) — f(_q7 _q2> _ qf(q7 qll)
fla. )+ f(=a.—a*) " f(&,q)

v(q) =

(1.11)

and

o) = L)~ —a) (@) (L12)

flata ) + f(=¢* —a7h) fla.¢')
In [9], the authors explored the following continued fraction of order 12:
AJCe=d) _dl-9) ¢U-a)-q")
f(=¢*,=¢")  (1-¢)+ (1-¢ )(1+Q)
(1 —¢*)(1 —¢')
(1 —¢*)(1+ q”)

They derived modular relations involving H(q) and H(q") for n = 3,5, and u(q)

and u(q") for n = 2, where u(q) = —H(—q) = Q%-

H(q) :=

For example, they
proved that if  := u(q) and i := u(q?), then
y(y? + D+ 2+ 2) — 22 (y" +20° + 6y +y + 1) + 22y (y* + 1) = 0,
They obtained the following integral representation for u(q) as a quotient of defi-
nite integrals, along with some explicit valuations of these continued fractions:
(g) = 1 —exp(—2 [ 2 ()0 (¢%)dt)

O T (=2 [T (02 () dt)

The authors in [16] obtained the modular relations involving H(¢) and H(¢") for

n = 2,3,5,7,9,11, and 13 by using modular relations of Rogers-Ramanujan-
type functions of order 12 and theta function identities. In [6], modular relations
connecting H(q) and H(¢") for n = 6,10, 14, and 18 were derived. In [2], the
researchers obtained the Eisenstein series identities associated with the continued
fraction H(q). In [8], properties of the coefficients of the continued fraction H (q)
were studied through 2, 3, 4, 6, and 12-dissections of H(q) and its reciprocal.
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Define

U(q) = —— and Vig) i= ——. (1.13)

The motivation for defining U(q) and V' (g) by using the continued fractions u(q)
and v(q) is that such continued fractions admit nice integral representations and
also there are nice relations connecting these two continued fractions U(q) and
V(q). From Lemma 1.1, (1.11), (1.12) and (1.13), one can easily verify the follow-
ing lemma, which expresses the continued fractions in terms of theta functions:

Lemma 1.2. We have

u(g)v(q) =1, (1.14)
(¢ 4")

Ulq) = g (1.15)
~qf(q.q")

Vig) = ETEm (1.16)

UV (g = XOLCT) (1.17)

V(¢®) f2(—q)

This paper is organized as follows. In Section 2, we derive some modular re-
lations involving our continued fractions U(g) and V'(g), and Ramanujan’s theta
functions defined above. In Section 3, we establish 2- and 4-dissections for U(q)
and 2-dissection for V' (¢q). In Section 4, we prove two integral representations for
each U(q) and V' (g). In Section 5, we establish a relation between U (q) and G(q).
Using this relation and some known values of G(q), we computed U (¢) and V' (q).

2. MAIN RESULTS

In this section, we establish modular relations that link the continued fractions
u(q), v(q), U(q) and V' (q) with the Ramanujan theta functions.
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Theorem 2.1. We have

Ulg) = V() =1, Q.1
Ulq) +V(q) sz(?’_qq?, 2.2)
U%(q) - V*(q) fo(?’_q;), 2.3)
v(a) +v2(q) =ADNED), 24
Ui(g) - Vi) <2 @) (@ a) 25)

Proof. Identities (2.1) and (2.2) follow from (1.15), (1.16) and Lemma 1.1. Identity
(2.3) follows from (2.1) and (2.2). Now we proceed to prove (2.4). We have

¢ (q3) / (q2,q4) = Z q3k2+3g2+g‘

kf=—00

Here we set
k+¢=2K +aand —k+{=2L+b,
where a, b € {0,1} and K, L € Z. Then
k=K—-L—(b—a)/2and¢ =K+ L+ (b+a)/2.

Then we have a = b,andso k = K — Land ¢/ = K + L + a, where a € {0, 1}.
Thus, there is 1-1 correspondence between the set {(k,¢)/ — oo < k, ¢ < oo} and
{(K,L,a)/ —oo < K,L < 00, a € {0,1}}. Thus, we find that

1 0 2
b (q3) f (q2,q4) :Zq3a2+a ( Z q6K2+(1+6a)K>
a=0

K=—c
=2 (. ")+ (. 4"

Using (1.15) and (1.16), we obtain (2.4). Identity (2.5) follows easily from (2.3)
and (2.4). U
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Theorem 2.2. We have

u(q®)u(q) +1 ¥ (q) ¢ (¢*) — qv (¢*) ¥ (¢°) 2.6)
(I —u(q) (1 —u(q?) f(=a) f(=¢*) ’ '
u(q)u(q®) +1 ¢ (®) ¥ (¢*) — ¢ (¢"°) ¥ (¢) @
(I —u(g®) (1 —u(q) f(=q) f(=d°) ’ '
u(q)u(d®) +1 ¢ (—4") ¢ (—¢®)
(1-u(g®) (1 -u(q) f(=a)f(=a*)x(=a)x(=¢*)
X (@)Y (=d°) ¢ (=q*) q2><(q6)¢ (=a'*) ¢ (=¢") 28)
f(=a) f(=¢*) x (—¢'?) (=) f(=a®) x(=¢*) ’ '

J(—q
u(@)tul@ _,  av(d’)o(—d")
(1-u(g®)(1—-u(q) ~ f(—a)f(-¢
(=) x (@) ¥ (=4°)  ox(a®) ¥ (=a"®) b (=¢") 2.9)
T A (a?) T @) x (—dh) ‘
Proof. Identity (2.6) can be written in the form
2 1 1
(I-u(q)(1-u(g®) (L-ulqg) (I-ulg)
_ o (@)Y (@) —av (d°) ¥ (¢°)
; f(=a) f(=¢*) '

Using (1.13), we may rewrite the above identity in the form

+1

o(gY)v(a) — qp(d®)v(¢®)
UlQU(¢*) + (U(q) — 1) (U(g*) — 1) = . 2.10
(@U(¢*) + (Ulg) = 1) (U(¢*) — 1) e ) (2.10)
By applying (1.15), (1.16) and (2.1) in the identity (2.10), we obtain
F@ d ) + @ F(@® ) @' @) = ¢(aM)(a) — qv(d®)v(q?).
(2.11)

Thus, it is enough to prove (2.11). We have

o () v(g)= > ¢Frre 2.12)

kf=—o00

Here we set
k+¢=3K+aand —2k+{(=3L+b,
where a, b € {—1,0,1}. Then

k=K—-L—(b—a)/3and ¢ =2K + L+ (b+ 2a)/3.
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Then wehave a = b,andsok = K — Land { = 2K + L +a, where —1 < a < 1.
Thus, there is 1-1 correspondence between the set {(k,¢)/ — oo < k, ¢ < oo} and
{(K,L,a)] —o00 < K,L < 00, =1 < a < 1}. Thus, we find that

1 00
<Z>(q4)¢(Q) _ Z q2a2+a Z q12K2+2(1+4a)K+6L2+(1+4a)L

a=—1 K,L=—
1
2 — —
_ Z FrTf (q2(7+4a)’q2(5 4a)) f (q7+4a7q5 4a)
a=—1

=qf (¢°,¢") £ (¢*,¢°) + £ (¢"*,4"°) f (¢". ¢°)
+¢*f (*,¢) f (d''.q),

which is same as (2.11). This completes the proof of (2.6). The proof of (2.7)-
(2.9) follows in a similar way, with a suitable choice of change of the indices. [J
Theorem 2.3. We have

u(g®)u(q”) +1
(1—=u(g®)) (1 —u(q))

(2.13)

¢ (q70) " (q4) 147 (q2) W (q140) — g% (q21) " (q15)
f (=) f(=q") ’
(2.14)

u(q)u (qu) +1
(I—u(q) (1 —u(q"))

(2.15)

¢ (*) ¥ (¢*) + o () ¥ (¢*) — "¢ (¢*) ¥ ()
f(=q) f (=) '

(2.16)

Proof. Applying (1.13), (1.15), (1.16) and (2.1) in (2.13), we see that

f (q35’ q49)f (q25’ q35) + q12f (q7’ q77) f (q57 q55)
=¢(¢") ¢ (¢") + 4" (¢*) ¥ (") — ¢*¢ (¢®") ¥ (¢"°) -
2.17)

Changing ¢ to ¢2 in (2.17) and then multiplying the resulting identity by 4q, we
obtain
Aqf (q707 qso) f (q987q70) L 4gPF (qlo7 qno) f (q14, q154)

:4q{</>(q140) " (qS) + (q4) " (q280)} — 4% (q42) " (q30) ‘
(2.18)
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Setting a = b = gand a = b = ¢ in (1.5), we find that

¢(q)=¢ (") +2q¥ (¢%),
¢ (q35) — ¢ (q140) + 2q35¢ (q280) )

Using the above two identities, we obtain

113

¢ () ¢ (@)= (—¢*) ¢ (—q) =4q{¢ (¢'°) ¢ (¢®) + **¢ (¢*) v () } .

(2.19)

From (2.18) and (2.19), we conclude that

4qf (q70’ q50)f (q98,q70) 4 4q25f (qu7 q110) f (q14’ q154)

=¢(q) ¢ (¢*) — ¢ (—q) & (—¢%) —4¢"¢ (¢"*) v (¢*°) .

(2.20)
Thus, we need to prove (2.20).
Using (1.2), we have
> 2 2
¢ (q®) b (0) =1 (*.¢%) fe0)= D> ¢*F . (2.21)
kl=—00
Here we set
Sk+{¢=12K +a and —Tk+{¢=12L+1,

where a,b € {0,4+1,+2,+3,+4, +5,6}. Then

k=K—L+ (a—0b)/12 and ¢ =T7TK +5L+ (7Ta+ 5b)/12.

Since k, ¢, K and L are all integers, we have ¢ = b,andso k = K — L and ¢ =
TK 4+ 5L+ a, where —5 < a < 6. Thus, there is 1-1 correspondence between the
set {(k,0)/ —oo < k,{ <oo}and {(K,L,a)/ —oco < K,L < o0, =5 < a < 6}.
From (2.21), we find that
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6 00
a? 84 K2414 Ka+60 L2410 La
q) = E q E q
a=—5 K,L=—00

:a§:5 anf (q14(6+a)’ q14(6— a)) f (qlo 6+a ¢ )
7

—2¢®f (q14 q154) f (qlo qllo) 1 24f ( 140) 7, 100)
+24°f (q42,q126)f(q30,q90) +2q4f( 112) ( 40, )
+2qf (¢, ¢") f (°.¢°) + f (¢*,¢**) £ (¢°°, ¢*)
+q*f (¢'%,1) f (¢'*,1). (2.22)

Replacing g by —¢ in (2.22) and then subtracting the resulting identity from (2.22),
we obtain (2.20). This completes the proof of (2.13). In a similar way, one can
establish (2.15). O
Theorem 2.4. We have
AU (q) — 4U*(9)V (q) = 3U(q) + V*(q) = 2U(q)V (¢) = U(q) + V(q) =
(2.23)
4V3(q)U(q) — 4V>(q) = 3V3(q) + U*(q) — 2U(q)V(q) = U(q) + V(g) = 0.
(2.24)
Proof. We have
1 fld'.¢®)  f(=a)
4U (q) — =4 —
D50 = ) F@)
41*(q",4°) = f*(=9)
= . 2.25
7@ )T (—0) 22
Recall that we have by [10, Eq. 26],
$(q) + 0(¢*) = 2f(—=4¢", —a°)x(q) (2.26)
and by [5, Entry 24(iii)],
f(—q) = 259 2.27)
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Changing g to — ¢ in (2.26), then employing resulting identity and (2.27) to (2.25),

we get

1 2{¢*(=¢%) +20(—q)d(-¢")}
Ulq) *(—q) + o(—9)p(—¢?)

o(—4¢°)
:2 ( N ”)
o(—q) ‘
<¢(—q3) " 1)
From (2.1) and (2.2), we have
¢(=q) _Ulg) =V(g)
o(=¢®)  V(e)+Ulg)

Employing (2.29) in (2.28), we obtain (2.23).
The proof of (2.24) follows similarly, and we omit the details.

4U(q) —

Theorem 2.5. We have
1 1
+
V2U(q) < V2V (q)

Proof. By definition V (g), we have

3V (g) = Q) +2qf(q,q")
\/2V ) \/QQf (¢,a"™) f(— Q).

From Lemma 3.1 of [10, Eq. 27], we have
o(q) — 0(¢”) = 2qx(q) f(—q, —¢"").
Changing ¢ to — ¢ in (2.32), we deduce that

d(—q) — 6(—¢°) = —2qx(—q) f (g, ¢'").
Employing (2.27) and (2.33) to (2.31), we get

—%)

W(q)> -1 w<q2>¢3<—g3>.

2x(—q)
(—¢°)

B (
oV N —of(_
@ x(—Q)\/ 2129 (4 —g) - ¢(~g?)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

\/ (<¢2<—q> — *(—®)x(—0)f(—q)
o

—q) + ¢(—q3)
1

(=0 1
\/ <¢2<—q3> 1) 20(q)

)

(2.34)
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In [3], we have

0*(e) | _Aev(9vi@®) o _ 3
e T TP A 239

Employing (2.35) in (2.34), we obtain (2.30). U

Theorem 2.6. We have

1 o(—q*) 1
— AU(a) = — 2.36
2U(q) @ (=) [p(—g?) o (2:39)
#(—q)
Proof. By the definition of U(q), we have
1 f(=q) —2f(¢°,q")
—/2U(q) = . 2.37
s VYT 237
Employing (2.27) and (2.26) in (2.37) and recall ¢(q) = f(q, q), we get
1 —o(—¢%)
—/2U(q) =
20(q) 9= oD F D)
_o(=¢%)
_ d(—q)
P(—q)
o(—q3) o
_o(=¢) 1
o) [o(—¢)
#(—q) !
O

3. 2- AND 4-DISSECTIONS FOR U(q) AND 2-DISSECTION FOR V' (q)

In this section we obtain 2 and 4-dissections for U(q) and V' (q).
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Theorem 3.1. If U(q Z anq” and V (q Z bnq", then
n=0

> ammg" = ﬁ {£(@"d®)f(¢* ) + ' fa,6) f(a,4")}
n=0

3.1)
Zaanq {q Fa. ) (&, @) +af@ . d®) fla.d")},
(3.2)
sznq {f "0 f(a,4") + F(aa") f (@ a”)
(3.3)

> bant1q" = ﬁ {f@".a"V (@ &) +af(d a") fla,q")}.
n=0

3.4
Proof. In view of (1.3), we have
f(d", ¢
Ulg) = 2\ 2 9
@ f(=¢% —q)
fa",6°) fa.q*)
= . 3.5
fA(—4¢?) G-
Setting (a, b) = (q5, q7) in (1.5), we obtain
", d°) = f(@®.¢®) + @ F(d*, ¢). (3.6)
Puttinga = gand b = q3 in (1.5), we obtain
f@.a%) = (&, d"°) + @ f(a®, a'). 3.7)

Employing (3.6) and (3.7) in (3.5), then comparing coefficients of ¢*" and ¢*"**

respectively, we deduce that

Zaznq {fq ¢ (@ ¢ + ¢ f(d a") f(@* )}
(3.8)

> asng?t = fg(iqZ) {1 a") f(d% ") + @ (@, a) f (¢ d') } -
n=0
(3.9)
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Changing q to q Zin (3.8) and (3.9), we deduce (3.1) and (3.2), respectively.
Proof of (3.3) and (3.4) are similar and we omit the details. U

We define P := f(¢*,¢%), Q = f(¢.4""), R == f(d",¢"). S := f(q,4").
A= f(¢",¢*), B = f( ¢, C = [, d'"). D = f(¢*,q"), M =
f(¢® ¢°)and N := f(q,q").

Theorem 3.2. If U(q Zanq then
Z aind” z; [(N?* + M2qT)QS — 2 MNQRg®

7)¢*(—q)
+BDN2q4 + (ACN? —2(AD + BC)MN + BDM?) ¢*

+ (ACM? —2MNPS) ¢* + (N*q + M*)PR} (mod 4),
(3.10)
oo N 1
+(-2AMNS + BM*S) ¢* + ((AR+ DP)N®> —2BRMN) ¢°
+ (—=2PCMN + (AR + DP) M?) q} (mod 4), (3.11)
1
Za4n+2q EW {—2 MNQSQ7 +N2QRQ6 +M2QRq5
+ ((AD + BC)N? —2BDMN) ¢* + (-2 ACMN + (AD

+BC)M? + N*PS) ¢* + M*PSq — 2 MNPRq} (mod 4),
(3.12)

Z Aan+3q™ zm {QDN?*¢" + (-2CMNQ + DM?Q) ¢° + (AN?S

~2BMNS) ¢* + (AM*S + BN?R) ¢* + (PCN* — 2 (AR + DP
xMN + BRM?) g+ PCM?} (mod 4). (3.13)
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Proof. we have

> agg" = JQ% {Fa™a™) (@ a”) +a" fla.a*) fla.qa") }
n=0

(—q)
2 q) {f f( 4 7
ey ¢, ¢")+q'f(a:4*) (", 9)}
(qu()q {f@' ™) (@ )+ " fla,®) f(d" a)}
2
= % {f @ V(& )+ d* fla,a®) f(a,d")} -
(3.14)
From (1.2), we have
o™ (q) = <1+2Zq > = 1(mod 4). (3.15)
n>1
In view of (3.15), identity (3.14) follows as
Za _ ¢2(—Q) 11 13 3 5 4 23 7 d 4
onq" = 0@ (=) faa) (@ q°) +q" f(g,a7) f(g,q") p(mod 4).
(3.16)
We can easily find that
F@ ") = £(d",¢°) + a" (. ™), (3.17)
(@ a°) = f(a". ") + @ f(d* ¢*), (3.18)
£(a,4®) = f(@®.4) + af (¢, 4™), (3.19)
fla.4") = £(d", ¢ + af (¢, ¢*°), (3.20)
U(—q) = f(—q,—¢%) = F(®,¢"°) — af (®. ¢"). 321

Employing (3.17)-(3.21) to (3.16) and then comparing the coefficients ¢*" and

¢*" ! powers of resulting identity and changing ¢ to ¢ 1/2 , we obtain (3.10) and

(3.12).
The Proofs of (3.11) and (3.13) are similar to the proofs of (3.10) and (3.12), re-
spectively. O

4. INTEGRAL REPRESENTATIONS FOR U(q) AND V' (q)

In this section, we derive integral representations for the functions U(q) and
V(g).
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Theorem 4.1. For(0 < g < 1,

U(q) :% +Cyexp <2 /wQ(qW (a°) dq) : .1

Ua) =5+ Coow (5 [ (20206 (@) + 60 30" ()} ).
4.2)

Vig) =— % +Crexp (2 / v (@)y* (*) dq) , (4.3)

and

V(Q):_%+C26Xp <é /{2¢2(Q)¢2 (¢®) + 6" (q) = 36" (¢*)} Cf]q>7
(4.4)

where ¢(q) and 1(q) are defined as in (1.2) and (1.3), respectively, and Cy and Cy

are some constants.

Proof. To prove (4.1), Using (2.1) and (2.2), we find that
8(—*) _ (-0 (%)
o(—=9) (690 (—0%¢%) s
Taking logarithm on both sides of (4.5), we obtain

log (2U(q) Zlog<1+q)—l—210g< )
— Zlog (1 —q) Zlog (1+q3€> (4.6)

Taking derivative on both sides of (4.6), after some 51mp11ﬁcat10ns, we deduce that

2U(q) — 1= (4.5)

d 2 e~ ¢ = g3t
% log (2U(q) —1)] = . [Z T 3)° 1_7(166] . (4.7)

=1 (=1
Using identity found in Entry 1 (iii) in Chapter 19 of Ramanujan’s notebooks [5,
p-225], we deduce that
d
& log (2U(q) — 1)] = 2¢*(q)¢* (¢*) -
Integrating both sides of the above identity and then exponentiating, we obtain
4.1).
To prove (4.2), we use (4.5) and (1.2), thus we have
(4% 4%)o0 (4% 4°) 0o (=% %) 0o (=4 ¢*) o
(4% 4%)00 (=035 ¢°) 00 (€5 4%) 00 (=453 45) o

2U(q) — 1= (4.8)
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In a similar way, we obtain

o _ 60—4 00 60—1 00 B 60—
Logu(g) - 1) = - Y IET T s O

_ ,60-3 _ 60 60—3
=1 1-¢ (=1 1-4 1+4
> 6@ 1 o 2£—1 20—2 0 26(]%_1
_Z +qae+z 1+qze1 +Zl+q2z
(=1 =1 =1
N i (20— 1?2 X 20g* T
— 201 — 20
=1 1—¢ o= 1—q
1 > /¢ 0 & Y 3¢
DD D D e
q = 1-(-9)" H1-(=9
1| 04 > 0g3t
+ - -3
q ; L+ (=g ; L+ (—g)*
4.9)
Recall that we have by [5, p. 226],
1 > 0q = g3t
() () -1) =) ———— -3y — . (4.10)
GRS e = B B
Also, we have [5, p. 114, Entry 8(ii)]
1,4 > lq*
- —1) = . 4.11
2 (6% 1) ;1+(_q)g (4.11)
From (4.9), (4.10) and (4.11), we deduce that

d% log (2U(q) —1)] = 8—1q (20°(0)¢* (¢®) + ¢"(a) —3¢" (¢))

which leads us to (4.2). Substituting (4.1) and (4.2) in (2.1), we obtain (4.3) and
(4.4), respectively. This completes the proof of the theorem. (]
5. EXPLICIT EVALUATIONS OF U(q) AND V' (q)

We know that G(q) satisfy the following interesting identity:
¢*(—q)
¢*(—q%)’

which is due to Ramanujan and can be found in [5, p. 347]. We observed that there

1-8G3(q) = (5.1)

is a remarkable relation between U (q) and G(gq), which can be found using the first
equality of (4.5) and (5.1) and given by

11 1 174
W®—§+§<T:@Wa> -
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Substituting above relation in (2.1), we obtain the relation between V' (¢) and G(q)
and is given by

11 1 1/4
V(q>:‘§+5<m> -

It is known that, many mathematician have computed several explicit evaluations
for the G(q) for example see [1, Theorem 5.6]. Thus from the above identities, by
using the known values of G/(¢) we can compute U (q) and V' (g). For example, we

have
_em/vEy 1 1
U(—e ) 5 <1+ 73 ),
U(—e™™ 5) —1 + !
2, < {1/1 _ BV VEY >
1+ 4/(6v3—9)
U(—e ™) = ,
241/ (6v/3 —9)
Veemh=ogt 1f NG
4 3—v5)3(v3-5)3
5 <\/1 NG )
e L] . 1—4/(6v3—9)
V(—e ) :5 = 1 and V(—e ) = .
3 21/(6v/3 —9)
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