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Abstract

This paper is devoted to the study of a generalization of coherence in ring theory.
The concept of n-coherence, where n € N* U {co}, was originally introduced
as an extension of the classical notion of coherence for rings. Building upon this,
we introduce the ¢-version of n-coherence, referred to as ¢-n-coherence, which
unifies and generalizes several existing approaches. We further explore and char-
acterize various important classes of rings: the notion of nonnil-coherent rings,
first proposed to generalize coherence in the context of rings with nonzero nilrad-
icals; the concept of strongly nonnil-coherent rings, recently defined to capture
stronger finiteness conditions; and the class of nonnil-semihereditary rings, which
extend semihereditary properties to the ¢-torsion setting. In addition, a new
characterization of Priifer domains is provided using these generalized coherence
conditions.
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1 Introduction

In this introductory paragraph, we outline certain conventions and provide a review
of standard background material. The set of nilpotent elements of a ring R is denoted
by Nil(R), while Z(R) represents the set of zero-divisors of R. A ring is termed a
¢-ring if its nilradical Nil(R) is divided prime, meaning that Nil(R) C xR for every
xz € R\ Nil(R). An ideal I of R is called nonnil if I ¢ Nil(R). The notation H (resp.,
H) refers to the set of all rings with a divided prime nilradical (resp., those with a
divided prime but not maximal nilradical). A ring R is called a strongly ¢-ring if
R € H and Z(R) = Nil(R).
For a ring R and an R-module M, we define

¢-tor(M) ={xz € M | sx =0 for some s € R\ Nil(R)}.

An R-module M is called a ¢-torsion module (resp., a ¢-torsion-free module) if
¢-tor(M) = M (resp., ¢-tor(M) = 0). An R-module M is said to be uniformly ¢-
torsion (or u-¢-torsion) if sM = 0 for some s € R\ Nil(R), and it is said to be
¢-divisible if M = sM for every s € R\Nil(R). The classical projective dimension and
flat dimension of an R-module M are denoted by pdg (M) and fdg (M), respectively.

A submodule N of an R-module M is called a ¢-submodule if M/N is a ¢-
torsion module [6, Definition 2.1]|. Similarly, N is called a uniformly ¢-submodule (or
u-¢-submodule) if M /N is a u-¢-torsion R-module. We also recall from [13] that a sub-
module N of an R-module M is said to be pure if the sequence 0 - FQrN — FQrM
is exact for every R-module F. Moreover, as introduced in [9], N is said to be
nonnil-pure if this sequence is exact for every finitely presented ¢-torsion R-module F.

Let R be a ring and n a non-negative integer. An R-module M is said to be
n-presented if there exists an exact sequence

F,—-F_ 1= —=F->M=0

such that each F; is a finitely generated free R-module, equivalently, a finitely gen-
erated projective R-module. If M is a ¢-torsion R-module that is n-presented, then
M is called a ¢-n-presented module. A finite n-presentation of a ¢-torsion R-module
is called a ¢-n-presentation. Obviously, every finitely generated projective module is
n-presented for every n. A module is O-presented (resp., 1-presented) if and only if
it is finitely generated (resp., finitely presented), and every m-presented module is
n-presented for all m > n.

In 2002, the author of [14] defined and studied a new class of rings that generalizes
the concept of classical coherent rings. Specifically, a ring R is said to be n-coherent if
every finitely generated submodule N of a free module F' with pdz(N) < n is finitely
presented, for any positive integer n, possibly infinite.

In [17], G. H. Tang, F. G. Wang, and W. Zhao introduced the notion of ¢-von Neu-
mann regular rings. An R-module M is said to be ¢-flat if, for every R-monomorphism
f: A — B with ¢-torsion cokernel, the induced map f®1: AQg M — BRgr M is an
R-monomorphism [17, Definition 3.1]. An R-module M is ¢-flat if and only if M, is
¢-flat for every prime ideal p of R, or equivalently, if M, is ¢-flat for every maximal
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ideal m of R [17, Theorem 3.5]. A ¢-ring R is called a ¢-von Neumann regular ring if
every R-module is ¢-flat, which is equivalent to the condition that R/ Nil(R) is a von
Neumann regular ring [17, Theorem 4.1].

Next, the authors of [16] introduced the concept of strongly ¢-flat modules, defined
as follows: an R-module F is said to be strongly ¢-flat if TorkR(F7 K) = 0 for every
¢-torsion R-module K and every k € N*.

In [3], K. Bacem and A. Benbhissi introduced two new classes of ¢-rings that further
generalize the concept of coherence in rings. A ¢-ring R is called ¢-coherent (resp.,
nonnil-coherent) if R/Nil(R) is a coherent domain |3, Corollary 3.1] (resp., every
finitely generated nonnil ideal of R is finitely presented).

According to [1], a ¢-ring R is said to be strongly nonnil-coherent if every ¢-1-
presented R-module is ¢-n-presented for every n € N* [1, Definition 2.2]. It is shown in
[1, Theorem 2.4] that a strongly nonnil-coherent ring is characterized by the property
that every direct product of strongly ¢-flat R-modules is strongly ¢-flat.

D. F. Anderson and A. Badawi, in [2], introduced the concept of ¢-Priifer rings.
A ¢-ring R is ¢-Priifer if R/ Nil(R) is a Priifer domain |2, Theorem 2.6|. It is noted
that every ¢-Priifer ring is a Priifer ring |2, Theorem 2.14|, and if Z(R) = Nil(R),
then every Priifer ring is ¢-Priifer [2, Theorem 2.16].

The authors of [20] introduced the notion of nonnil-FP-injective modules over rings
with prime nilradical, called NP-rings. An R-module M is called nonnil-FP-injective
if Extp(T, M) = 0 for every finitely presented ¢-torsion module 7.

The authors of [9] introduced and defined the concept of the ¢-(weak) global dimen-
sion for rings with prime nilradicals. An R-module P is said to be ¢-u-projective if
Ext}%(R N) = 0 for every u-¢-torsion R-module N. The ¢-projective dimension of a
module M over R, denoted by ¢-pdp M, is said to be at most n > 1 (where n € N)
if either M = 0, or M is a nonzero module that is not ¢-u-projective but satisfies
Ext’st (M, N) = 0 for all u-¢-torsion R-modules N. If n is the smallest non-negative
integer such that Ext);t (M, N') = 0 for all such modules N, then we set ¢-pd M = n.
If no such n exists, we define ¢-pdp M = oo.

For aring R, the ¢-global dimension is either 0 or the supremum of all ¢-pd,(R/I),
where I ranges over the nonnil ideals of R such that R/I is not ¢-u-projective. In
particular, if R is a ring with Z(R) = Nil(R), then the ¢-global dimension of R is the
supremum of ¢-pdg(R/I) over all nonnil ideals I of R.

Similarly, the ¢-flat dimension of a module M over R, denoted by ¢-fdr M, is said
to be at most n > 1 (where n € N) if either M = 0, or M is a nonzero module that
is not ¢-flat but satisfies TorﬁH(M, N) = 0 for every u-¢-torsion R-module N. If n is
the least non-negative integer such that Tor®? 1 (M, N) = 0 for every such module N,
then we set ¢-fdg M = n. If no such n exists, then we define ¢-fdgr M = co.

For rings R with Z(R) = Nil(R), the ¢-weak global dimension of R is defined by:

¢-w.gl.dim(R) = sup {¢-fdr M | M is a ¢-torsion module}
= sup {¢-fdgr(R/I) | I is a nonnil ideal of R}
= sup {¢-fdg(R/I) | I is a finitely generated nonnil ideal of R} .
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Thus, the ¢-weak global dimension of a ring R is either 0 or the supremum of all
¢-fdr(R/I), where I is a nonnil ideal of R such that R/I is not ¢-flat.

The authors of [20] introduced the notion of nonnil-FP-injective modules as follows:
an R-module F is said to be nonnil-FP-injective if Extk(F, E) = 0 for every finitely
presented ¢-torsion R-module F.

In [5], the authors introduced a new class of ¢-rings, called nonnil-semihereditary
rings. A ¢-ring R is said to be nonnil-semihereditary if every finitely generated nonnil
ideal is u-¢-projective. It was shown that nonnil-semihereditary rings coincide with ¢-
Priifer strongly ¢-rings. The authors also introduced the notion of nonnil-FP-projective
modules. An R-module F is said to be nonnil-FP-projective if Extp(F, E) = 0 for
every nonnil-FP-injective R-module F.

Given a class .Z of R-modules, we denote by

£+t ={M | Extp(L,M)=0forall L €.}
the orthogonal class of £, and by
+& ={M |Extp(M,L)=0for all L € £}

the dual orthogonal class of £ .

Let F be a class of R-modules and M an R-module. Following [11], a homo-
morphism ¢ : M — F with F € F is called an F-preenvelope of M if for every
homomorphism f : M — F’' with F/ € F, there exists g : F — F’ such that
gp = f. An F-preenvelope ¢ : M — F'is called an F-envelope if every endomorphism
g : F' — F satisfying g = ¢ is an isomorphism. Dually, one defines the notions of F-
precovers and F-covers. F-envelopes (resp., F-covers), if they exist, are unique up to
isomorphism. It is easy to see that every %-injective preenvelope is monic, and every
@ -projective precover is epic.

Following [11], a pair (&7, %) of classes of R-modules is called a cotorsion pair if
=% and + B = /. A cotorsion pair (o7, %) is called hereditary [12, Definition
1.1] if whenever 0 — A" — A — A” — 0 is exact with A, A” € o7, then A’ € .
Equivalently, by [12, Definition 1.2], the cotorsion pair is hereditary if whenever 0 —
B" - B — B"” — 0 is exact with B, B € 4, then B" ¢ 4.

A cotorsion pair (&7, %) is called perfect [12] if every R-module has an &/-cover
and a Z-envelope. It is called complete (see [11, Definition 7.16] and [18, Lemma 1.13])
if for every R-module M, there exist exact sequences

0—+-M-—>B—A—0 with Ae o/, Be %,

and
0—+B A —-M-—0 withAd' €o/, B €.

In our paper, we denote by ¢-.7,,, where n € N* U {oc}, the class of all finitely
presented ¢-torsion R-modules whose ¢-projective dimension is less than or equal to n.
This paper is organized into three sections, including the introduction. The second
section introduces the concept of ¢-n-coherent rings, which generalizes the classical
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notion of n-coherent rings as presented in [14]. We extend the classical concepts of n-
flat and n-absolutely pure modules to define ¢-n-flat and ¢-n-absolutely pure modules.
These notions are formally introduced in Definition 2.1: an R-module M is said to
be ¢-n-flat (resp., ¢-n-absolutely pure) for n € N* U {oo} if Torf’(M, N) = 0 (resp.,
Ext},(N, M) = 0) for all N € ¢-.7,.

In Theorem 2.2, we characterize ¢-n-absolutely pure modules, while Proposi-
tions 2.3 and 2.4 present additional results concerning families of modules. Theorem 2.5
establishes a connection between ¢-n-flat and ¢-n-absolutely pure modules.

Next, we define the concept of a ¢-n-coherent ring in Definition 2.9, generalizing
the classical notion of an n-coherent ring by incorporating ¢-torsion submodules into
the coherence condition. Theorem 2.11 provides a series of equivalences characterizing
¢-n-coherent rings, demonstrating that such rings satisfy several properties related
to extension preservation, direct products, and conditions involving flat and abso-
lutely pure modules. Lemma 2.12 and Corollary 2.13 offer further characterizations
for nonnil-coherent rings and their associated modules in the context of ¢-coherence.

We also explore results concerning ¢-n-FIl-injective modules, which generalize
the concept of Fl-injectivity introduced in [15]. Several characterizations of strongly
nonnil-coherent rings and their modules are presented. Specifically, in Corollary 2.25,
we show that a ¢-ring R is strongly nonnil-coherent if and only if certain conditions
on exact sequences of R-modules are satisfied, including the nonnil-FP-injectivity of
specific modules.

Proposition 2.26 characterizes when an R-module over a ¢-n-strongly coherent ring
is injective, and Corollary 2.29 extends these results by providing equivalent conditions
for an R-module to be injective in the strongly nonnil-coherent case. Theorem 2.28
offers a second characterization of ¢-n-strongly coherent rings, while additional equiv-
alences involving injective covers and pure quotients of modules are also discussed.
Theorem 2.33 and its corollaries characterize when every ¢-n-absolutely pure R-
module is injective, yielding further insights into the structure of ¢-n-strongly coherent
rings.

Finally, Corollary 2.38 shows that strongly nonnil-coherent rings are characterized
by the fact that nonnil-FP-injectivity (resp., ¢-flatness) forms a co(resolving) class.

In this section, we define the notion of ¢-n-semihereditary rings for n € N* U {oo},
as introduced in Definition 3.1. A ¢-ring R is said to be ¢-n-semihereditary if, for
every exact sequence

0—>K—P—C—0,

where C € ¢-7, and P is a finitely generated projective R-module, the module K is
also projective. This definition is followed by a remark noting that a ¢-ring is nonnil-
semihereditary if and only if it is ¢-(oo)-semihereditary, according to [5, Theorem
3.8].

The characterization of ¢-n-semihereditary rings is provided in Theorem 3.3, where
several equivalent conditions are established. These include ¢-n-coherence and various
homological properties involving ¢-n-flat and ¢-n-absolutely pure modules. Corol-
lary 3.8 extends these results to the context of nonnil-semihereditary rings, offering
deeper insight into the interplay between these rings and their associated module
categories.
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Next, we introduce the concept of weakly ¢-n-semihereditary rings. A ¢-ring R is
said to be weakly ¢-n-semihereditary if, for every short exact sequence

0+-K—>P—-Q—0,

where Q € ¢-7, and P is a finitely generated projective R-module, the module K
is flat. This notion is formally defined in Definition 3.6, and additional characteriza-
tions are provided in Theorem 3.7 and Corollary 3.8, showing that submodules of flat
modules preserve ¢-n-flatness in this context.

Finally, Theorem 3.9 presents a more detailed characterization of ¢-n-
semihereditary rings. These developments culminate in a comprehensive view of the
structure and properties of nonnil-semihereditary and ¢-Priifer rings, as synthesized
in Corollary 3.5 of [5].

2 On ¢-n-coherent rings

Refer to [14] for the definitions of n-flat and n-absolutely pure R-modules, where
n € N* U {+oo}. An R-module M is said to be n-flat (resp., n-absolutely pure) if
Torf'(X, M) = 0 (resp., Exth(X, M) = 0) for every finitely presented R-module X
with pdg(X) < n.

The forthcoming Definition 2.1 extends these classical notions in the setting of ¢-
torsion modules. Throughout this paper, we denote by ¢-.7, the class of all finitely
presented ¢-torsion R-modules whose ¢-projective dimension is less than or equal to
n, where n € N* U {cc}.

Definition 2.1. Let R be aring and let n € N*U{4o00}. An R-module X is said to be:
1. ¢-n-flat if Torl(M, X) = 0 for every M € ¢-.,.
2. ¢-n-absolutely pure if Exth (M, X) = 0 for every M € ¢-.7,.

The following Theorem 2.2 provides a characterization of ¢-n-absolutely pure R-
modules.

Theorem 2.2. Let M be an R-module. Then the following statements are equivalent:
1. M is ¢p-n-absolutely pure.
2. M 1s injective with respect to every eract sequence

0-K—-P—-C—0
of R-modules, where C € ¢-F,,, P is finitely generated projective, and K is finitely
generated.
3. There exists a pure exact sequence

0-M-—-M —-M' -0

of R-modules such that M’ is ¢-n-absolutely pure.
Proof. This follows immediately from [21, Theorem 2.4]. O
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Proposition 2.3. Let {M; |i € I} be a family of R-modules. Then the following
statements are equivalent:

1. Fach M; is ¢-n-absolutely pure.

2. [lier M is ¢p-n-absolutely pure.

3. @,c; M; is p-n-absolutely pure.

Proof. This follows immediately from [21, Proposition 2.5]. O

Proposition 2.4. Let {M; |i € I} be a family of R-modules. Then the following
conditions are equivalent:

1. Each M; is ¢-n-flat.

2. @, M; is p-n-flat.

Proof. This follows immediately from [21, Proposition 2.6]. O

Theorem 2.5. Let M be an R-module. Then M is ¢-n-flat if and only if M is
¢-n-absolutely pure.

Proof. This follows immediately from [21, Theorem 2.7]. O

Corollary 2.6. FEvery pure submodule of a ¢-n-flat module is also ¢-n-flat.
Proof. This follows immediately from [21, Corollary 2.8]. O

Recall from the Introduction the definition of an n-coherent ring, where n € N* U
{+o0}. A ring is said to be n-coherent if every finitely generated submodule N of a
free module F' with pdz(N) <n —1 is also finitely presented.

Definition 2.7. A ¢-ring R is called ¢-n-coherent, where n € N* U {+o0}, if every
finitely generated ¢-submodule N of a finitely generated free R-module F satisfying
¢-pdg(N) <n —1 is finitely presented.

Remark 2.8. From [7, Proposition 3.2], when R is considered as a ¢-ring, it follows
that R is nonnil-coherent if and only if it is ¢-(o0)-coherent.

As shown in [14], there are various characterizations of n-coherent rings. To draw
parallels with those, we introduce the following auxiliary definition:

Definition 2.9. Let n € N* U {4+00}. A submodule N of an R-module E is called
¢-n-pure if the short exact sequence

0—-N—->E—E/N—0

is preserved by Hompg(F, —) for every finitely presented ¢-torsion R-module F' with
¢-pdr(F) < n. In this case, the sequence is referred to as a ¢-n-pure short exact
sequence.

Remark 2.10. By [8, Theorem 2.9/, an R-submodule N of an R-module M is nonnil-
pure if and only if it is ¢-(c0)-pure.
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We now arrive at the main theorem of this section. To proceed, recall that for any
R-module M, we define its character module by M ™ := Homgz (M, Q/Z).

Theorem 2.11. The following statements are equivalent for a ring R and n € N* U
{o0}:

1. R is ¢-n-coherent.

2. For any C € ¢-7,, and any direct system (My)aca of R-modules, we have

lim Extp(C, Ma) 2 Extp, (C,lim M,) .

3. For any family {N,} of R-modules and any C € ¢-7,,, we have

Torl (H Na,C) = HTor{%(Na,C).

Any direct product of copies of R is ¢-n-flat.

Any direct product of ¢-n-flat R-modules is ¢-n-flat.

Any direct limit of ¢p-n-absolutely pure R-modules is ¢p-n-absolutely pure.

Any direct limit of injective R-modules is ¢p-n-absolutely pure.

An R-module M 1is ¢-n-absolutely pure if and only if M™T is ¢-n-flat.

An R-module M is ¢-n-absolutely pure if and only if MTT is ¢-n-absolutely pure.
An R-module M is ¢-n-flat if and only if M+ is ¢-n-flat.

For any ring S, and for all C € ¢$-T,,, B a left R- and right S-module, and E an
injective right S-module, we have

NSNS S

NN

Torf (Homg(B, E), C) = Homg (Ext}%(C’, B),E).

12. For every injective R-module E and every ¢-n-pure submodule N of E, the
quotient E/N is ¢-n-absolutely pure.

13. Ext®(C,N) = 0 for every C € ¢-7, and every FP-injective R-module N.

14. If N is a ¢-n-absolutely pure R-module and Ny is an FP-injective submodule of
N, then the quotient N/Ny is ¢-n-absolutely pure.

15. For every FP-injective R-module N, the quotient E(N)/N is ¢-n-absolutely pure,
where E(N) denotes the injective envelope of N.

16. The dual of any projective (or free) R-module is ¢-n-flat.

If, in addition, R is a strongly ¢-ring, then the above statements are also equivalent

to the following:

17. Every R-module has a ¢-n-flat preenvelope.

18. For every ¢-n-absolutely pure R-module E and every ¢-n-pure submodule N of
E, the quotient E/N is ¢-n-absolutely pure.

The proof of Theorem 2.11 requires the following lemma.

Lemma 2.12. Let n € N*. For a strongly ¢-ring R, the following conditions are
equivalent:
1. R is a ¢-n-coherent ring.
2. ExtQR(M, N) = 0 for every finitely presented ¢-torsion R-module M with
¢-pdp(M) < n, and for every ¢-n-absolutely pure R-module N.
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Proof. Assume that R is a ¢-n-coherent ring, and let M be a finitely presented ¢-
torsion R-module with ¢-pdg(M) < n. Then there exists a short exact sequence

0—-H—F—M-—0,

where F' is a finitely generated free R-module and H is a finitely generated ¢-
submodule of F. Since R is a strongly ¢-ring, it follows that ¢-pdp(H) < n — 1.
Therefore, for any ¢-n-absolutely pure R-module N, the above sequence induces the
exact sequence

Exty(H, N) — Ext®(M,N) — 0.
Because N is ¢-n-absolutely pure, we have Exth(H, N) = 0, and thus Ext% (M, N) =
0.

Conversely, assume that Ext%(M, N) = 0 for all finitely presented ¢-torsion R-
modules M with ¢-pdg(M) < n, and all ¢-n-absolutely pure R-modules N. Let M
be a finitely generated ¢-submodule of a finitely generated free R-module F such
that ¢-pdr(M) < n — 1. Since Z(R) = Nil(R), it follows that ¢-pdz(F/M) < n, so
Ext%(F/M,N) = 0 for every ¢-n-absolutely pure R-module N. From the long exact
sequence of Ext, we get Exth (M, N) = 0 for each such N, and in particular, for every
absolutely pure R-module N. By [10], this implies that M is finitely presented. Hence,
R is a ¢-n-coherent ring. O

Proof of Theorem 2.11. The equivalences between statements (1) through (12) follow
immediately from [21, Theorem 3.3].

The equivalences between statements (1), (13), (14), and (15) follow from [21,
Theorem 3.5].

The equivalence between statements (1) and (16) follows directly from [22,
Theorem 2.1].

(1) = (17): Assume that R is a ¢-n-coherent ring, and let N be a ¢-n-pure submodule
of a ¢-n-absolutely pure R-module E. Then, for every finitely presented ¢-torsion
R-module M with ¢-pdp(M) < n, the long exact sequence of Ext gives

Exth(M, E) — Exth(M, E/N) —s Ext%(M, N).

Since N is ¢-n-pure in E, the following commutative diagram with exact rows arises
for every such M:

Hompg(M, E) —— Hompg (M, E/N) —— Extp(M,N) —— 0

| |

Homp(M, E) —— Hompg(M, E/N) 0 0

From this diagram, it follows that Exty (M, N) = 0, so N is ¢-n-absolutely pure.
By Lemma 2.12; we have Ext?%(M, N) = 0. Moreover, since F is ¢-n-absolutely pure,
Exty(M, E) = 0. Hence, the exact sequence above yields Ext (M, E/N) = 0, showing
that E/N is also ¢-n-absolutely pure.
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(17) = (18): This implication is straightforward.

(18) = (1): Let N be a ¢-n-absolutely pure R-module, and let M be a finitely pre-
sented ¢-torsion R-module with ¢-pdgz(M) < n. To show that R is ¢-n-coherent, by
Lemma 2.12 it suffices to show that Ext%(M, N) = 0.

Let F be an injective R-module containing N. Since N is a ¢-n-absolutely pure
submodule of E, the sequence

0>N—-E—-E/N—=0

is a ¢-n-pure exact sequence. By assumption, E/N is also ¢-n-absolutely pure. Hence,
Exty(M, E/N) = 0. From the associated long exact sequence of Ext, it follows that

Exth(M, E/N) = Ext%(M, N),
and so Ext% (M, N) = 0, as desired. O

The following Corollary 2.13 provides a complete characterization of nonnil-
coherent rings. It extends the well-known result [7, Corollary 3.13].

Corollary 2.13. The following statements are equivalent for a ¢-ring R:
1. R is nonnil-coherent.
2. For any finitely presented ¢-torsion R-module C and any direct system (My)aca
of R-modules, we have

hi)nExt}g(C, M,) = Exty, (c, th)nMJ .
3. For any family {N,} of R-modules and any finitely presented ¢-torsion R-module

C, we have
Torl (H Na,C) = HTor{%(Na,C).

Any direct product of copies of R is ¢-flat.

Any direct product of ¢-flat R-modules is ¢-flat.

Any direct limit of nonnil-FP-injective R-modules is nonnil-FP-injective.

Any direct limit of injective R-modules is nonnil-FP-injective.

An R-module M is nonnil-FP-injective if and only if M is ¢-flat.

An R-module M is nonnil-FP-injective if and only if M is nonnil-FP-injective.
An R-module M is ¢-flat if and only if M+ is ¢-flat.

For any ring S, and any finitely presented ¢-torsion R-module C, R-S-bimodule
B, and injective S-module E, we have

NS0 N O

~ o~

Torf (Homg(B, E), C) = Homg (Extk(C, B), E) .

12. For every injective R-module E and every nonnil-FP-injective submodule N of
E, the quotient E/N is nonnil-FP-injective.

15. EXt%(C, N) = 0 for every finitely presented ¢-torsion R-module C' and every
FP-injective R-module N.
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If N is a nonnil-FP-injective R-module and Ny is an FP-injective submodule of
N, then N/Nj is nonnil-FP-injective.

For every FP-injective R-module N, the quotient E(N)/N is nonnil-FP-injective,
where E(N) denotes the injective envelope of N.

The dual of any projective (or free) R-module is ¢-flat.

If, in addition, R is a strongly ¢-ring, then the above are also equivalent to:

17.
18.

Every R-module has a ¢-flat preenvelope.
For every nonnil-FP-injective R-module E and every nonnil-pure submodule N
of E, the quotient E/N is nonnil-FP-injective.

Proof. This follows immediately from Remark 2.8 and Theorem 2.11 by taking n =

Q.

O

To explore further properties of nonnil-coherence, we now present a strengthened

analogue of the well-known behavior of FI-injective modules, as introduced and studied
by the authors in [4].

Definition 2.14. Let R € H and n € N*U{oo}. An R-module E is said to be ¢-n-FI-
injective if Ext}%(F, E) =0 for every ¢-n-absolutely pure R-module F. When n = oo,
the ¢-n-Fl-injective modules are simply called ¢-FI-injective.

Remark 2.15. [t is clear that every ¢-Fl-injective R-module is also Fl-injective.
Moreover, the ¢-n-FIl-injective modules correspond to the € I-injective modules in [22],
where the class € is taken to be ¢-F,,.

Proposition 2.16. Let R be an integral domain and E an R-module. Then E is
¢-Fl-injective if and only if E is Fl-injective.

Proof. This follows immediately from [20, Theorem 1.6] and the definition of FI-
injectivity. [

The following proposition (Proposition 2.17) establishes the equivalence of several

conditions for an R-module M, including its ¢-n-FI-injectivity and properties related
to exact sequences and injective precovers associated with this class of modules.

Proposition 2.17. Let n € N* U {oc} and let R € H. The following statements are
equivalent for an R-module M :

1.
2.

3.
4.

M is ¢-n-Fl-injective.
For every exact sequence

0—-M—FE—L—0,
where E is ¢-n-Fl-injective, the map E — L is a ¢-n-Fl-injective precover of L.
M is the kernel of a ¢-n-Fl-injective precover f: E — L with E injective.
M is injective with respect to every exact sequence

0—-A—-B—C—0,

where C' is ¢-n-Fl-injective.
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Proof. This follows immediately from Remark 2.15 and [22, Proposition 2.3]. O

Recall that an R-module M is said to be pure injective [11, Definition 5.3.6] if
it is injective with respect to every pure exact sequence of R-modules. The following
definition generalizes this concept to the context of nonnil-purity.

Definition 2.18. Let n € N* U {co} and let R € H. An R-module M is said to be
¢-n-pure injective if it is injective with respect to every nonnil-pure exact sequence of
R-modules. When n = oo, such modules are simply called nonnil-pure injective.

Remark 2.19. Obviously, every ¢-n-pure injective module is pure injective. Moreover,
the class of ¢p-n-pure injective modules corresponds to the class of €-pure injective

modules defined in [22], by taking € = ¢-,,.

Proposition 2.20. Let R € H and n € N* U {oco}. If R is a ¢-n-coherent ring, then
every ¢-n-pure injective R-module M admits a ¢-n-FP-injective cover f : N — M,
where N is injective. Moreover, ker(f) is a ¢-n-Fl-injective module that contains a
nonzero injective submodule.

Proof. This follows immediately from Remark 2.19 and [22, Proposition 2.7]. O

Corollary 2.21. Let R be a nonnil-coherent ring. Then every nonnil-pure injective
R-module M admits a nonnil-FP-injective cover f : N — M, where N is injec-
tive. Moreover, ker(f) is a ¢-FI-injective module that contains a nonzero injective
submodule.

Proof. This follows immediately from Remark 2.19 and Proposition 2.20. O

The following theorem characterizes ¢-n-Fl-injective modules over ¢-n-coherent
rings.

Theorem 2.22. Let R € H and n € N* U {oc}. If R is a ¢-n-coherent ring, then an
R-module M is ¢-n-Fl-injective if and only if M is the direct sum of an injective R-
module and a ¢-n-Fl-injective R-module that contains a nonzero injective submodule.

Proof. This follows immediately from Remark 2.19 and [22, Theorem 2.8]. O

Next, the authors of [1] introduced the notion of strongly nonnil-coherent rings as
¢-rings for which every finitely presented ¢-torsion R-module is n-presented for all
n € N*; see [1, Definition 2.2]. By taking ¢ = ¢-J, this notion coincides with the
concept of strongly € -coherent rings as defined in [22], as shown in [22, Lemma 3.7].
Building upon the work of [22], one can derive several characterizations of strongly
nonnil-coherent rings in the sense of [1].

Definition 2.23. Letn € N*U{co} and let R € H. Then R is said to be ¢-n-strongly
coherent if every F' € ¢-T,, is n-presented. In particular, every ¢-n-strongly coherent
ring is ¢-n-coherent.

The class of ¢-n-strongly coherent rings can be characterized as follows.
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Theorem 2.24. The following statements are equivalent for a ¢-ring R and n €
N* U {oo}:
1. R is a ¢-n-strongly coherent ring.
2. If0 > K — E — L — 0 is an ezact sequence of R-modules with K ¢-n-absolutely
pure and E FP-injective, then L is ¢-n-absolutely pure.
3. If0 > K — E — L — 0 is an ezact sequence of R-modules with K ¢-n-absolutely
pure and E injective, then L is ¢-n-absolutely pure.
4. R is ¢-n-coherent, and if

0O-N—-M-—->Q—0

is an exact sequence of R-modules with M and Q ¢-n-flat, then N is ¢-n-flat.
5. R is ¢-n-coherent, and if

0-N—-M-—->Q—0

is an exact sequence of R-modules with M flat and QQ ¢-n-flat, then N is ¢p-n-flat.
6. R is ¢-n-coherent, and if

0-N—->P—-Q—0

is an exact sequence of R-modules with P projective and QQ ¢-n-flat, then N is
¢-n-flat.
Proof. This follows immediately from [22, Theorem 3.1]. O

The following Corollary 2.25 provides a characterization of strongly nonnil-coherent
rings.

Corollary 2.25. The following statements are equivalent for a ¢-ring R and n €
N* U {o0}:
1. R is a strongly nonnil-coherent ring.
2. If
0—-K—=E—=L—=0

is an exact sequence of R-modules with K nonnil-FP-injective and E FP-injective,
then L is nonnil-FP-injective.
3. If
0-K—-E—-L—=0

s an exact sequence with K nonnil-FP-injective and E injective, then L is nonnil-
FP-injective.
4. R is nonnil-coherent, and if

0->N—->M-—-Q—0

is an exact sequence with M and Q ¢-flat, then N is ¢-flat.
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5. R is nonnil-coherent, and if
0—-N—-M-—->0Q—0

is exact with M flat and Q ¢-flat, then N is ¢-flat.

6. R is nonnil-coherent, and if
0-N—-P—-Q—0

is exact with P projective and Q ¢-flat, then N is ¢-flat.

Proof. This follows immediately from Theorem 2.24 by setting n = oc. O

Next, Proposition 2.26 characterizes when an R-module over a ¢-n-strongly
coherent ring is injective.

Proposition 2.26. Let R € H and n € N* U {co}. If R is a ¢-n-strongly coherent
ring, then the following statements are equivalent for an R-module M :

1. M is injective.

2. M is both ¢-n-injective and ¢-n-FI-injective.

3. There exists a ¢-n-injective cover f: M — N, where N is ¢p-n-FI-injective.

Proof. This follows immediately from [22, Proposition 3.2]. O

Corollary 2.27. Let R be a strongly nonnil-coherent ring. Then the following
statements are equivalent for an R-module M :

1. M is injective.

2. M is both nonnil-FP-injective and ¢-FI-injective.

3. There exists a ¢-injective cover f: M — N with N being ¢-FI-injective.

Proof. Follows directly from Proposition 2.26 by setting n = oco. O

Our second characterization of ¢-n-strong coherence is given below.

Theorem 2.28. Let n € N* U {oco}. The following statements are equivalent for a
o-ring R:
1. R is a ¢p-n-strongly coherent ring.
2. R is ¢-n-coherent, and every ¢-n-injective R-module that is also ¢-n-FI-injective
1S injective.
3. Fvery R-module has a ¢-n-injective cover, and every ¢-n-injective ¢-n-FI-
injective R-module is injective.
4. R is ¢-n-coherent, and for every ¢-n-Fl-injective R-module L, there exists a
¢-n-injective cover E — L with E injective.
5. Every R-module has a ¢-n-injective cover, and for every ¢-n-Fl-injective R-
module L, there exists a ¢-n-injective cover E — L with E injective.
6. Every ¢-n-pure quotient of a ¢-n-injective R-module has a ¢-n-injective cover,
and for every ¢-n-FI-injective R-module L, there exists a ¢p-n-injective cover E —
L with E injective.
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7. Every ¢-n-pure quotient of a ¢-n-injective R-module has a ¢-n-injective cover,
and every ¢-n-injective ¢-n-Fl-injective R-module is injective.

Proof. This follows immediately from [22, Theorem 3.3]. O

The following Corollary 2.29 provides another characterization of strongly nonnil-
coherent rings.

Corollary 2.29. The following statements are equivalent for a ¢-ring R:

1. R is a strongly nonnil-coherent ring.

2. R is nonnil-coherent, and every nonnil-FP-injective R-module that is also ¢-FI-
injective 1§ injective.

3. Every R-module has a nonnil-FP-injective cover, and every nonnil-FP-injective
¢-Fl-injective R-module is injective.

4. R is nonnil-coherent, and for every ¢-Fl-injective R-module L, there exists a
nonnil-FP-injective cover E — L with E injective.

5. Every R-module has a nonnil-FP-injective cover, and for every ¢-FI-injective
R-module L, there exists a nonnil-FP-injective cover E — L with E injective.

6. Every nonnil-pure quotient of a nonnil-FP-injective R-module has a nonnil-FP-
injective cover, and for every ¢-FI-injective R-module L, there ezxists a nonmnil-
FP-injective cover E — L with E injective.

7. Every monmnil-pure quotient of a monnil-FP-injective R-module has a monnil-
FP-injective cover, and every nonnil-FP-injective ¢-FI-injective R-module is
injective.

Proof. This follows immediately from Theorem 2.28 by taking n = oc. O

Recall from [5, Definition 4.1] that an R-module M is said to be nonnil-FP-
projective if Extp(M, N) = 0 for every nonnil-FP-injective R-module N.

Definition 2.30. Let n € N* U {co} and let R € H. An R-module P is said to be ¢-
n-FP-projective if Ext}%(P, E) = 0 for every ¢-n-absolutely pure R-module E. When
n = 0o, ¢-n-FP-projective modules coincide with nonnil-FP-projective modules.

Remark 2.31. The concept of ¢-n-FP-projectivity corresponds to the notion of € -
projectivity defined in [22], where € = ¢-F,.

Proposition 2.32. Let R be an integral domain and M an R-module. Then M is
nonnil-FP-projective if and only if M is FP-projective.

Proof. If R is an integral domain, then by [20, Theorem 1.6], an R-module N is
nonnil-FP-injective if and only if Exth(R/I,N) = 0 for every finitely generated ideal
I of R. This implies that any nonnil-FP-projective module over a coherent domain is
FP-projective. O

The following theorem establishes when every ¢-n-absolutely pure R-module is
injective.

Theorem 2.33. Let n € N* U {oo}. The following statements are equivalent for a
¢-ring R:
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FEvery R-module s ¢-n-FP-projective.

Every ¢-n-absolutely pure R-module is injective.

FEvery nonzero R-module has a nonzero ¢-n-FP-projective submodule.

R is ¢-n-strongly coherent, and every ¢-n-absolutely pure R-module has a ¢-n-
FP-projective cover with the unique mapping property.

Proof. This follows immediately from [22, Theorem 3.4]. O

Lo~

Corollary 2.34. The following statements are equivalent for a ¢-ring R:
1. Every R-module is nonnil-FP-projective.
2. FEvery nonnil-FP-injective R-module is injective.
3. Every nonzero R-module has a nonzero nonnil-FP-projective submodule.
4. R is strongly monnil-coherent, and every monnil-FP-injective R-module has a
nonnil-FP-projective cover with the unique mapping property.

Proof. This follows immediately from Theorem 2.33 by taking n = co. O

From [23], a ring R is said to be strongly € -coherent, where € is a class of finitely
presented R-modules, if every short exact sequence of R-modules

0-K—=P—Q—0,

with Q € ¥ and P finitely generated projective, implies that K is %-projective; see
[23, Definition 2]. Our goal is to justify that, for ¥ = ¢- I, the notion of strongly
¢-coherence in [23] coincides with the notion of strongly %-coherence in [1].

Definition 2.35. Let n € N* U {oo} and let R € H. Then R is said to be strongly
nonnil-n-coherent if it is strongly &-coherent in the sense of [23], where € = ¢-F,.
When n = oo, we refer to this as strongly ¢-coherent instead of strongly nonnil-oo-
coherent.

The following theorem characterizes strongly nonnil-n-coherent rings.

Theorem 2.36. The following statements are equivalent for a ring R:
1. R is strongly nonnil-n-coherent.
2. For every C € ¢-9,, there exists an exact sequence

0>K—-P—C—0,

where P is finitely generated projective and K is ¢-n-FP-projective.
3. For every C € ¢-7,, there exists an exact sequence

0—-K—P—=C—0,

where P is projective and K is ¢-n-FP-projective.

4. 1If
0O—-—K—-P—>C—=0

is exact with C € ¢-J, and P projective, then K is ¢-n-FP-projective.
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5. Ext’;;l(C, N) = 0 for every k € N, every C € ¢-7,,, and every ¢-n-absolutely
pure R-module N.
Ext%(C,N) = 0 for every C € ¢-7, and every d-n-absolutely pure R-module N .
7. If N is a ¢-n-absolutely pure R-module and N1 C N is a ¢-n-absolutely pure
submodule, then N/N; is ¢-n-absolutely pure.
8. For every ¢-n-absolutely pure R-module N, the quotient E(N)/N is ¢-n-
absolutely pure, where E(N) denotes the injective hull of N.
9. The pair (¢-F, 2, p-T, L) forms a hereditary cotorsion pair.
10. R is ¢p-n-coherent, and TorkRH(M, C) =0 for every k € N, every C € ¢-,,, and
every ¢-n-flat R-module M.
11. R is ¢-n-coherent, and Tork(M,C) = 0 for every C € ¢-7, and every ¢-n-flat
R-module M.
12. Ext’;;l(P, N) = 0 for every k € N, every ¢-n-FP-projective R-module P, and
every ¢-n-absolutely pure R-module N.

>

Proof. This follows immediately from [23, Theorem 1]. O

Before concluding with the next characterization of strongly nonnil-coherent rings,
we first present the following corollary.

Corollary 2.37. Let R € H. Then R is strongly nonnil-coherent if and only if R is
strongly ¢-coherent.

Proof. If R is a strongly nonnil-coherent ring, then R is nonnil-coherent by [1, Corol-
lary 2.7], and every ¢-flat R-module F' satisfies Torf (F,C) = 0 for all k > 0, by [1,
Theorem 2.4]. It then follows from Theorem 2.36 (10) that R is strongly ¢-coherent.

Conversely, if R is a strongly ¢-coherent ring, then R is nonnil-coherent by
Theorem 2.36 (10), and so every direct product of copies of R is ¢-flat by [6, Theorem
2.6]. Again, by Theorem 2.36 (10), every direct product of copies of R is strongly
¢-flat. Therefore, R is strongly nonnil-coherent by [6, Theorem 2.6]. O

As a consequence of Theorem 2.36 and Corollary 2.37, we obtain the following
result, which characterizes strongly nonnil-coherent rings by the fact that the nonnil-
FP-projective and ¢-flat modules form resolving classes, while the nonnil-FP-injective
modules form a coresolving class.

Corollary 2.38. The following statements are equivalent for a ring R:
1. R is strongly nonnil-coherent.
2. For every finitely presented ¢-torsion R-module C, there exists an exact sequence

0—-K—>P—=C—0,

where P is finitely generated projective and K is nonnil-FP-projective.
3. For every finitely presented ¢-torsion R-module C, there exists an exact sequence

0—-K—>P—=C—0,

where P is projective and K is nonnil-FP-projective.
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4. 1If
0--K—->P—->C—=0
is exact with C a finitely presented ¢-torsion module and P projective, then K is
nonnil-FP-projective.
5. Ext’f{rl(C, N) =0 for all n € N, all finitely presented ¢-torsion R-modules C,
and all nonnil-FP-injective R-modules N .
6. Ext%(C,N) = 0 for every finitely presented ¢-torsion R-module C' and every
nonnil-FP-injective R-module N .
7. If N is a nonnil-FP-injective module and N; C N is a nonnil-FP-injective
submodule, then N/N; is nonnil-FP-injective.
8. For every nonnil-FP-injective module N, the quotient E(N)/N is nonnil-FP-
injective.
9. The pair (¢-Too P, 0-TTI) is a hereditary cotorsion pair.
10. R 1is nonnil-coherent, and Toer(M, C) =0 for all n € N, all finitely presented
o-torsion R-modules C, and all ¢-flat R-modules M.
11. R s nonnil-coherent, and Torf(M, C) = 0 for all finitely presented ¢-torsion
R-modules C and all ¢-flat R-modules M.
12. Ext’éﬂ(P, N) =0 for all n € N, all nonnil-FP-projective R-modules P, and all
nonnil-FP-injective R-modules N .

3 On ¢-n-semihereditary rings

Our aim in this section is to provide new characterizations of Priifer domains by
studying ¢-n-semihereditary rings, where n € N* U {o0}.

Definition 3.1. Let n € N* U {oco}. A ¢-ring R is called ¢-n-semihereditary if for
every ezact sequence

0->K—-P—C—0,
where C € ¢-7,, and P is a finitely generated projective module, it follows that K is
projective.

Remark 3.2. From [5, Theorem 3.8], it follows that a ¢-ring R is nonnil-
semihereditary if and only if it is ¢-(c0)-semihereditary.

The following theorem provides several equivalent characterizations of ¢-n-
semihereditary rings.

Theorem 3.3. The following statements are equivalent for a ring R and n € N*U{oco}:
1. R is a ¢-n-semihereditary ring.
2. R is ¢-n-coherent, and every submodule of a ¢-n-flat module is ¢p-n-flat.
3. R is ¢-n-coherent, and every ideal is ¢-n-flat.
4. R is ¢-n-coherent, and every finitely generated ideal is ¢-n-flat.
5. Every quotient module of a ¢-n-absolutely pure module is ¢-n-absolutely pure.
6. Every quotient module of an injective module is ¢p-n-absolutely pure.
. Every module has a monic ¢-n-absolutely pure cover.
8. Every module has an epic ¢-n-flat envelope.
9. For every module A, the sum of an arbitrary family of ¢-n-absolutely pure
submodules of A is ¢-n-absolutely pure.
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Proof. This follows immediately from [21, Theorem 4.3|. O

Corollary 3.4. The following statements are equivalent for a ¢-ring R:
1. R is a ¢-Priifer ring with Z(R) = Nil(R),
. R is ¢-coherent and every submodule of a ¢-flat module is ¢-flat,
. R is ¢-coherent and every ideal is ¢-flat,
. R is ¢-coherent and every finitely generated ideal is ¢-flat,
every quotient module of a nonnil-FP-injective R-module is nonnil-FP-injective,
every quotient module of an injective module is nonnil-FP-injective,
every module has a monic nonnil-FP-injective cover,
every module has an epic ¢-flat envelope,
for every module A, the sum of an arbitrary family of nonnil-FP-injective
submodules of A is nonnil-FP-injective.

Co Do
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Next, the author of [22] introduced the concept of weakly %-semihereditary rings,
where € is a class of finitely presented R-modules. A ring R is said to be weakly
€ -semihereditary if, whenever there is a short exact sequence

0>K—=>P—=>Q—0,

with Q € € and P a finitely generated projective R-module, it follows that K is a flat
R-module.

Definition 3.5. Let R € H and n € N* U {co}. Then R is said to be weakly ¢-n-
semihereditary if R is a weakly ¢-, -semihereditary ring. When n = oo, we refer to
R as weakly nonnil-semihereditary instead of weakly ¢-oo-semihereditary.

Proposition 3.6. Let R € H. Then R is weakly nonnil-semihereditary if and only if
R is nonnil-semihereditary.

Proof. Clearly, every nonnil-semihereditary ring is weakly nonnil-semihereditary by
[5, Theorem 3.8]. Conversely, assume R is weakly nonnil-semihereditary. If R ¢ H,
then R is a ¢-von Neumann regular ring, and hence nonnil-semihereditary. Suppose
now that R € H, and let I be a finitely generated nonnil ideal of R. Then I is
¢-flat by Corollary 3.8, which implies that ¢-w.gl.dim(R) = 1. Therefore, R is nonnil-
semihereditary by [5, Theorem 3.8]. O

The weakly ¢-n-semihereditary rings can be characterized as follows.

Theorem 3.7. Let n € N* U {oco}. The following statements are equivalent for a
¢-ring R:
1. R is a weakly ¢p-n-semihereditary ring.
Every submodule of a ¢-n-flat R-module is ¢-n-flat.
Every submodule of a flat R-module is ¢-n-flat.
Every submodule of a projective right R-module is ¢-n-flat.
Every submodule of a free right R-module is ¢-n-flat.
Every finitely generated right ideal of R is ¢-n-flat.

G Lo b
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Proof. This follows immediately from [22, Theorem 4.3] and Proposition 3.6. O
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In particular, we obtain the following result, which characterizes nonnil-

semihereditary rings.

Corollary 3.8. The following statements are equivalent for a ¢-ring R:

1.

S v o

R is a nonnil-semihereditary ring.

Every submodule of a ¢-flat R-module is ¢-flat.

Every submodule of a flat R-module is ¢-flat.

Every submodule of a projective right R-module is ¢-flat.
Every submodule of a free right R-module is ¢-flat.
Every finitely generated ideal of R is ¢-flat.

Proof. This follows immediately from Theorem 3.7 by taking n = co. O

Th
1
2

3

S

&

10.
11.
12.

13.

1.

Another characterization of ¢-n-semihereditary rings is given below.

eorem 3.9. The following statements are equivalent for a ¢-ring R:

. R is ¢-n-semihereditary.
. R is ¢-n-coherent and weakly ¢-n-semihereditary.

R is strongly ¢-n-coherent and every ¢-n-FP-projective R-module has a monic
o-n-Fl-injective cover.

Every ¢-n-FP-projective R-module has projective dimension at most 1.

R is ¢-n-coherent and every ¢-n-Fl-injective module is injective.

Every R-module has a ¢-n-Fl-injective cover, and every ¢-n-Fl-injective module
18 injective.

Every ¢-n-pure quotient of a ¢-n-injective R-module has a ¢-n-injective cover,
and every ¢-n-FIl-injective module is injective.

R is strongly ¢-n-coherent and every ¢-n-Fl-injective module is ¢-n-injective.

R is strongly ¢-n-coherent and the kernel of every ¢-n-injective precover of an
R-module is ¢-n-injective.

R is strongly ¢-n-coherent and the kernel of every ¢-n-injective cover of an R-
module is ¢p-n-injective.

R is strongly ¢-n-coherent and the cokernel of every ¢-n-injective preenvelope of
an R-module is ¢-n-injective.

R is strongly ¢-n-coherent and the kernel of every ¢-n-flat precover of an R-
module is ¢-n-flat.

R is strongly ¢-n-coherent and the kernel of every ¢-n-flat cover of an R-module
is ¢-n-flat.

R is strongly ¢-n-coherent and the cokernel of every ¢-n-flat preenvelope of an

R-module is ¢-n-flat.

Proof. This is a direct consequence of [22, Theorem 4.6]. O

We now present a characterization of nonnil-semihereditary rings.

Corollary 3.10. The following statements are equivalent for a ¢-ring R:

1.
2.

R is nonnil-semihereditary.
R is strongly nonnil-coherent, and every nonnil-FP-projective R-module has a
monic ¢-FI-injective cover.
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10.

11.

12.

13.
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Every nonnil-FP-projective R-module has projective dimension at most 1.

R is nonnil-coherent, and every ¢-FI-injective module is injective.

FEvery R-module has a ¢-FIl-injective cover, and every ¢-FI-injective module is
injective.

Every nonnil-pure quotient of a nonnil-FP-injective R-module has a nonnil-FP-
injective cover, and every ¢-FI-injective module is injective.

R is strongly nonnil-coherent, and every ¢-FI-injective module is nonnil-FP-
injective.

R is strongly nonnil-coherent, and the kernel of any nonnil-FP-injective precover
of an R-module is nonnil-FP-injective.

R is strongly nonnil-coherent, and the kernel of any nonnil-FP-injective cover of
an R-module is nonnil-FP-injective.

R is strongly monnil-coherent, and the cokernel of any nonnil-FP-injective
preenvelope of an R-module is nonnil-FP-injective.

R is strongly nonnil-coherent, and the kernel of any ¢-flat precover of an R-
module is ¢-flat.

R is strongly nonnil-coherent, and the kernel of any ¢-flat cover of an R-module
is ¢-flat.

R is strongly nonnil-coherent, and the cokernel of any ¢-flat preenvelope of an
R-module is ¢-flat.

Proof. This follows immediately from Theorem 3.9 and Proposition 3.6, by taking
n = 00. O

Next, by [5, Corollary 3.5], it is well known that nonnil-semihereditary rings are

precisely the ¢-Priifer rings that are also strongly ¢-rings. Consequently, nonnil-
semihereditary reduced rings coincide with Priifer domains. The following corollary
provides a comprehensive characterization of Priifer domains.

Corollary 3.11. The following statements are equivalent for an integral domain R:

1.
2.

3.

S

S

10.

11.

R is a Priifer domain.

R is a coherent domain, and every FP-projective R-module has a monic FI-
injective cover.

Every FP-projective R-module has projective dimension at most 1.

R is a coherent domain, and every Fl-injective module is injective.

Every R-module has an Fl-injective cover, and every Fl-injective module is
injective.

R is a coherent domain, and every Fl-injective module is FP-injective.

R is a coherent domain, and the kernel of every FP-injective precover of an
R-module is FP-injective.

R is a coherent domain, and the kernel of every FP-injective cover of an R-module
1s FP-injective.

R is a coherent domain, and the cokernel of every FP-injective preenvelope of an
R-module is FP-injective.

R is a coherent domain, and the kernel of every flat precover of an R-module is

flat.

R is a coherent domain, and the kernel of every flat cover of an R-module is flat.
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12. R is a coherent domain, and the cokernel of every flat preenvelope of an R-module
is flat.

Proof. This follows immediately from Proposition 2.16, Theorem 3.9, and [5, Corollary
3.5]. O
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