Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
29 (2026), No. 1, pp. 51 - 64 http://dx.doi.org/10.17777/pjms2026.29.1.005

ON ADJACENCY SQUARE ROOT STRESS SUM
EIGENVALUES AND ENERGY OF GRAPHS

C. NALINA, P. SIVA KOTA REDDY, M. KIRANKUMAR, AND M. PAVITHRA

ABSTRACT. The stress of a vertex is a node centrality index, which
has been introduced by Shimbel (1953). The stress of a vertex in a
graph is the number of geodesics (shortest paths) passing through it.
In this paper, we introduce a new topological index for graphs called
squares stress sum index using stresses of vertices. We establish some
inequalities, prove some results and compute squares stress sum index for
some standard graphs. Further, a QSPR analysis is carried for squares
stress sum index of molecular graphs and physical properties of lower
alkanes and linear regression models are presented for some physical
properties.
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1. INTRODUCTION

In this paper, we consider finite, unweighted, simple, and undirected
graphs. A graph is represented as G = (V, E), where V is the set of vertices
and F is the set of edges. The degree of a vertex v € V is denoted by d(v).
The distance between two vertices u and v, represented as d(u, v), refers to
the length of the shortest path (geodesic) between them, measured by the
number of edges. A geodesic path P is said to traverse a vertex v if v is an
internal vertex of P, that is v is located on P but is not one of its endpoints.

Graph energy, introduced by Ivan Gutman [7] in 1978, is a graph in-
variant connected to the total m-electron energy in molecular graphs. It is
calculated as the sum of the absolute values of the eigenvalues of the graph’s
adjacency matrix. This concept plays a significant role in chemical graph
theory, particularly in analyzing molecular stability and properties influ-
enced by the structure of chemical compounds.Subsequently, several matri-
ces were introduced to represent various structural features of graphs, such
as distance, adjacency, and vertex degrees. Notable examples include the
distance matrix, Seidel matrix, Laplacian matrix, Seidel Laplacian matrix,
signless Laplacian matrix, Seidel signless Laplacian matrix, and the degree
sum matrix. These matrices are essential tools for analyzing different graph
invariants and topological indices. Numerous matrices can be related to a
graph, and their spectrums provide certain helpful information about the
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graph [2,4,6,7,9-12,17,22, 25, 26).

In 1953, Alfonso Shimbel [23] introduced the notion of vertex stress for
graphs as a centrality measure. Stress of a vertex v in a graph G is the num-
ber of shortest paths (geodesics) passing through v. This concept has many
applications including the study of biological and social networks. Many
stress related concepts in graphs and topological indices have been defined
and studied by several authors [1,3,5,13-16,18-21,24]. A graph G is k-stress
regular [5] if str(v) = k for all v € V(G).

The square root stress sum index [20] of a simple graph G = (V, E) is given
by

SRS(G) = Z V str(u) + str(v).
weE(G)
The stress-sum index SS(G) [?] of a simple graph G = (V, E) is given by
SS(G) = Z [str(u) + str(v)] .
weE(G)

Motivated by advancements in topological indices and their associated ma-
trices, as well as eigenvalue bounds, We introduce the square root stress
sum matrix of a graph G and define its corresponding energy, called the
square root stress sum energy and denoted by Fgps(G). This extends the
concept of graph energy by incorporating stress-based measures. Further-
more, we establish bounds for Egps(G) and explore its relationship with the
m-electron energy of molecular graphs, particularly those with heteroatoms.

2. SQUARE ROOT STRESS SUM MATRIX AND ENERGY

The square root stress sum matrix of a graph G with vertex set V(G) =

{v1,v2,...,v,} is defined as Agrs(G) = ((SRS);;), where

str(v;) + str(vy)  if vv; € E(G),
otherwise.

(SRS)(i.4) = {0

The square root stress sum polynomial of a graph G is defined as
Pagps(G) = |sr1 — Asrs(G)],

where [ is the n x n identity matrix.

All the roots of the equation Py, (q)(sr) = 0 are real, since the matrix
Agprs(G) is real and symmetric. These roots can therefore be ordered as

S’r‘l ZSTQZ"'ZSM»

with s,, being the largest and s,,, the smallest eigenvalue.

The square root stress sum energy of a graph G is given by

Bsrs(G) = Isn-
=1
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3. PRELIMINARY RESULTS

In this section, we will document the necessary results to support our
main findings in section 4.

Theorem 3.1. Let ¢; and d;, for 1 <i <n, be non-negative real numbers.

Then
1 M, M- A :
9 9 14Vlg mimesg
€ T4 (\/ mimg \ M1M2> (il i Z) ’

i=1 i=1

where My = maxi<i<p {¢i}; M2 = maxj<i<p {d;};m1 = mini<;<, {¢;} and
mo — minlgign {dl}

Theorem 3.2. Let ¢; and d;, for 1 < i <n be positive real numbers. Then

2
ZC? Zd? - (i Cidi) < %2 (M My — m1m2)2,

i=1

where My = maxi<i<p {¢i}; M2 = maxj<i<p {d;};m1 = mini<;<, {¢;} and
mo — minlgign {d,}

Theorem 3.3. (BPR Inequality) Let ¢; and d;, forl < i < n be non-
negative real numbers. Then

<a(n)(A—a)(B-b),

n n n
anzdz — chzdl
i=1

i=1 i=1

where a,b, A and B are real constants, that for eachi,1 <i<n,a<¢ < A
and b < d; < B. Further, a(n) =n [%W (1 — % [%])

Theorem 3.4. (Diaz—Metcalf Inequality) If ¢; and d;,1 < i < n, are non-
negative real numbers. Then

zn:d? —}—rRic? <(r+R) (icidZ) ,
i=1 i=1 i=1

where v and R are real constants, so that for each i,1 < i < n, holds
rcg S di S Rci.

Theorem 3.5. (The Cauchy-Schwarz inequality) If ¢ = (c1,ca,...,¢n) and
d = (dy,da,...,d,) are real n-vectors, then

(Se) = (5) (54)
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4. BOUNDS FOR THE SQUARE ROOT STRESS
EIGENVALUES AND ENERGY

Lemma 4.1. Let G = (V,E) be a graph and Pag,,(G) = s + c1s77 1 +
28" 2 + -+ + ¢, be the characteristic polynomial ofAsrs(G). Then

(Z) C1 = 0
(ii) c2 = —SS(G)

(i) c3 = —QZ H v/ str(u) + str(v),
A weE(A)
where the summation is taken over all cycles A of length 3 in G.

Proof. Since each coefficient ¢;,i = 1,2,---,n,(—1)’c; corresponds to the
sum of all the principal minors of Agrs(G) with i rows and 4 columns, we
have the following:

(i) ¢1 = 0 as all the principal diagonal elements of Asrs(G) are zero.

(= 3 |0 %= 3 = 3 (strw) +str(v) = ~SS(G).
1<i<j<n ! 7 1<i<j<n 1<i<j<n

(iil) From the definition of Psg,.(G), we have

(—1)3C3 = sum of all 3 x 3 principal minors of Agrs(G)
bii  bij bk
= C3=(-1 > |bu by b
1<i<j<k<n| bk brj bk

=— Z [bii (bjiber — brjbjr) — bij (bjibek — bribji) + bk (bjibr; — bribjj)]
1<i<j<k<n

=— > buagbe+ Y (b + bybi + kb))

1<i<j<k<n 1<i<j<k<n

— Z bijbjkbki — Z bikbkjbji

1<i<j<k<n 1<i<j<k<n

= —22 H str(u) + str(v).

A weE(A)
0

Lemma 4.2. Let Asrs(G) be the square root stress sum matriz with Sy, >

Spy 2> ... > Sy, TEPTESENLING Ut Square root stress sum adjacency eigenvalues.
Then

(i) 32y s, =0

(ir) Y1y sz =289(G).

Proof. 1) The first equality is a direct consequence of Agrs(G)i; = 0 for all
1,2,...,n.
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ii) We have

n

Z 337-, = Trace (ASRS(G)Q)

i=1

=" Asrs(G)(i, 5)Asrs(G) (4, 1)

i=1 j=1

=2 Y Agsrs(G)(u,v)Asrs(G)(v, u)
weE(G)

=2 Z Vstr(u) + str(v)/str(v) + str(u)

weE(G)

=2 Z [str(u) + str(v)]
weE(G)

=255(Q).

O

Lemma 4.3. If a,b,c, and d are real numbers, then the determinant of the
form

A+ a)ly, — adp, —cJmxn
—dJpxm (A+b)I, — bJ,

s given by:
=A+a)™ YA+ (A= (m—1)a) (A= (n—1)b) — mncd] .
Theorem 4.4. If K, ,, is a complete biparite graph, then

Phgns (i) = s | (=2 =)

2

Proof. The graph K, , of order m + n has two types of verices namely, m
vertices are of stress % and n of stress m(mT_l) Hence,

0 n(n—1) + m(mfl)J

ASRS (Kmm) _ - mXxXm : 2 2 mxn

Pagrs (Km,n) =[] — Asrs (Kmun)|

sl A

2 4 2O o sl

where I, is the identity matrix of order r X r, Op,xym is the zero matrix of
order m X m, and Jp,xy is the m X n matrix with all entries equal to 1.
Thus, by applying Lemma 4.3, we obtain the desired result.

O

Theorem 4.5. If K1x,_1 is a star graph, then

Pagps (Kixn—1) = s 2 [572« —(n—1) (Wﬂ .
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Proof. The star graph K1x,—1 has two types of vertices: Internal vertex has

(n—1)(n—2)
2

stress and remaining vertex have stress 0. Hence,

0 /(n—l)(n—Q)J .
ASRS (K]anl) — ( )1><1 2 1><( 1)

w;n_mj(n_l)xl (0)("—1)><(”_1)

PASRS(K1><7L—1) = |5r1 - ASRS(len—1)|

spIh -/ 7(71_1)2(”_2) Jix(n-1)
—/ 7(n_1)2(n_2) Jn-1)x1 Srln_1)

where I, is the identity matrix of order r X r, Oy, %y, is the zero matrix of
order m X m, and Jp, x5 is the m x n matrix with all entries equal to 1.
Thus, by applying Lemma 4.3, we obtain the desired result. (]

Theorem 4.6. Let G be any graph with n-vertices. Then

. < [2 SS(GT)L(n )

Proof. Setting ¢; =1,d; = sy, for i =2,3,...,n in Theorem 3.5, we have

n 2
(4.1) (Z sn> <(n—1)> sh
i=2 ;
From Lemma 4.2, we find that
n n
Zs” = —s,, and Zszz = —s2 +2S5(G).
i=2 i=2
Employing the above in ( 4.1) we obtain
(—81,)> < (n—1) (28S(G) — s2))
255(G)(n—1)

— Srq S #

Theorem 4.7. Let G be any graph with n-vertices. Then

Esrs(G) < 4/255(G)n.
Proof. Choosing ¢; = 1,d; = |s;,|, for i = 2,3,...,n in Theorem 3.5, we get
n 2 n
(Soal) <nyt
i=1 i=1

(BEsrs(G))? < n(2S85(G))

= Esrs(G) < 1/2nSS(Q).
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Theorem 4.8. If G is a graph with n vertices and Esrs(G) be the Square
root stress sum energy of G, then

V288(G) < Egrs(G).

Proof. By the definition of Fsrs(G), we have

[Esrs(G)]° (Z |5, ) Z |57, |

= 25S(G)

which gives

285(G) < Esrs(G).
O
Theorem 4.9. Let G be any graph with n vertices, and let ® be the absolute

value of the determinant of the Square root stress sum matriz Agrs(G).
Then

\/255 ) + n(n — 1)82/7 < Egps(G).

Proof. By the definition of square root stress sum energy,we find that

n 2
(Esrs(@))” = (Z |Sn|)

i=1
n
= Z ‘871‘2 + 22 |sr, 8Tj|
i=1 i<j

SS(G)+ D lsrllsr, -

oy
Since for non-negative numbers the arithmetic mean is not smaller than the
geometric mean,

1
nn—1)

) 2 o

Z#J

8’(‘] =

I \/
S/~
<. <.
== i
— .
e £
S P
s
L
v
2|
3
Z

Therefore,
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— [Esrs(@))? > 255(G) + n(n — 1)&*/"

— Bsns(G) > 1/255(G) + n(n — 1)@/,

Equality in AM-GM inequality is attained if and only if all 5,54 =1,2,...,n
are equal. O

Lemma 4.10. Let ¢y, ca,...,c, be non-negative numbers. Then

n n 1/n n n 2
1
n[n;@-(w) <o (£4)

n(n —1) [ Zc, (f[lci>l/n].

Theorem 4.11. Let G be a connected graph with n vertices. Then

V25S(G) + n(n — )2/ < Egps(G) < 1/255(G)(n — 1) + n@2/n,

Proof. Let ci:|s”| ,i=1,2,...,n and
TR ST (H )/]
- ﬁ‘f " i=1 h
255(6) o
=n <H| n)

_[2856) W}
n

= 255(G) — n®*/™.
By Lemma 4.10, we obtain

2
n
V< nz |sri|2 — (Z ES > <(n—-1V.
i=1
that is

2SS(G) — n®*™ < 2n88(G) — (Esps(G)) < (n — 1) (2SS(G) - n<1>2/n)

on simplifying of above equation, we find that

\/25S(G) + n(n — )&/ < Bsps(G) < /255(G)(n — 1) + nd2/n.
O
Theorem 4.12. Let G be a graph of order n. Then

n2
ESRS(G) 2 \/2SS(G)TL - Z (sm - Srmin)27

where Sy, = Spmax = MaX1<i<n |Sr;

and Spmin = Minj<i<y | S, |-
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Proof. Suppose Sy, Srys - - -, Sr, are the eigenvalues ofAgrs(G) We assume
that ¢; = 1 and d; = |sy,|, which by Theorem 3.2 implies

n 2 2

n

E :125 |ST1 - (E 8Ti> SZ(Srl_Srmin)Q
i=1 i=1

’/l2

ZSS(G)’N’ - (ESRS(G))2 < I (51"1 - Srmin)2

2
— Bons(G) > /255G~ "2 (51 — sy

Theorem 4.13. Suppose zero is not an eigenvalue of Asrs(G), then

Q) > 2./3m1 Srminy\/25S(G)n

Sry + Srmin

Esps(

where Sy, = Spmax = MaX1<i<n |Sr;| aNd Spmin = MiNj<i<y S, |-

Proof. Suppose Sy, Spy, ..., Sp, are the eigenvalues ofAgrs(G) We assume
that ¢; = |s,,| and d; = 1, which by Theorem 3.1, we have

Silyor < (i o) (Z>

255(G)n < i <M> (Esrs(@))?

Sr1Srmin

2,/5r15rmm/255(G)n

= Esrs(G) >
( ) Sry + Srmin

Theorem 4.14. Let G be a graph of order n. Let sy, > sy, > ... > s, be
the eigenvalues ofAsrs(G) Then

255(G) + nSry Srmin
Sry + Srmin

where Sy, = Spmax = MaX1<i<n |Sr;| ANd Sy min = Minj<i<p |Sr,|.

Esrs(G) >

)

Proof. Assigning d; = |sr,|,ci =1, R = |sy,| and 7 = |$y min|-
Then by Theorem 3.4, we get

n n n
Z |5Ti|2 + Sy Srmin Z 12 S (srl + Srmin) Z ‘Sri‘
i=1 i=1 i=1

= 255(G) + nSr, Srmin < (89, + Srmin) Psrs(G).

After simplifying and using the definition of Fgrg(G), we obtain
255(G) + nSry Sy min

Esrs(G) >
( ) Sry + Srmin
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Theorem 4.15. Let G be a graph of order n. Let sy, > Sy, > ... > s, be
the eigenvalues ofAsrs(G) Then

Esns(G) > \/255(G)n — a(n) (51, — semin)’.

where Sy, = Symax = MaxXi<i<n |Sr;| and Spmin = Mini<i<y, |Sr,| and a(n) =
1
n 5] (=3 [51)-

Proof. Setting ¢; = |sy,
Theorem 3.3 we get

=d;j, A < |sy,| < B and a < |sp,| < b, then by

n

2
n
”Z |S”|2 o <Z 87’1") < O‘(n) (Sh - Srmin)2
i=1

i=1

ie., ‘255((;)71 - (ESRS(G))Q) < a(n) (Sr, — Srmin)’

- ESRS(G) = \/ZSS(G)n - a(n) (sn - Srmin)z'

5. CHEMICAL APPLICABILITY OF Egrs(G)

In this section, we perform a computational analysis of the square root
stress sum energy Esps(G) and m-electron energy of heteroatoms. This
study explores linear, quadratic, and cubic regression models. Since real-
world data can exhibit nonlinear patterns, flexible approaches are necessary
to capture such variations. These models enable researchers to determine
the best fit for their specific data. This section highlights the chemical rele-
vance of square root stress sum energy in developing linear, quadratic, and
cubic regression models for properties such as m-electron energy.

The regression models tested are as follows:
Linear equation:

Y=A+DB1Xy
Quadratic equation:
Y = A+ B Xy + B X3
Cubic equation:
Y = A+ B1 X3 + BoX2 + B3 X3

Here, Y is the dependent variable, A being the regression constant, and B;
(where i = 1,2,3) are the regression coeflicients and X; (where i = 1,2,3)
are the independent variables.
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TABLE 1. Molecules containing hetero atoms with total -
electron energy and the square root stress sum energy.

Molecule Total m-electron energy FEgrs(G)
Veny chloride like system 2.23 2.828
Acrolein like systems 5.76 6.928
1,1-Dichloro-ethylene like systems 6.96 5.91
Glyoxal like and 1,2-Dichloro-
ethylene like systems 6.82 6.928
Butadiene perturbed at C2 5.66 6.928
Pyrrole like systems 5.23 9.152
Pyridine like systems 6.69 19.595
Pyridazine like systems 9.06 19.595
Pyrimidine like systems 9.10 19.595
Pyrazine like systems 9.07 19.595
S-Triazene like systems 9.65 19.595
Aniline like systems 8.19 26.093
O-Phenylene-diamine like systems 12.21 36.497
m-Phenylene-diamine like systems 12.22 34.691
p-Phenylene-diamine like systems 12.21 37.864
Benzaldehyde like systems 11.00 37.027
Quinoline like systems 14.23 62.13
Iso-quinoline like systems 14.23 62.13
1-Naphthalein like systems 16.15 72.132
2-Naphthalein like systems 16.12 76.183
Acridine like systems 20.56 133.766
Phenazine like systems 21.62 133.766
Iso-indole like systems 13.46 42.307
Indole like systems 13.59 42.307
Azobenzene like systems 21.02 122.995
Benzylidine-aniline-like systems 20.10 122.995
9,10-Anthraquinoline structures 24.23 164.02
Cabazole like structures 19.39 94.246

200

Linear: y=7.8563x - 45.444 P
150 R®=0.9259 .
s 100 -y
2 ot
50 e e
0 ° ~‘
5 10 15 20 25 T
-50

Pi-electron energy
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Quadratic : y = 0.3296x2 - 0.9735x + 2.645
R*=0.9814

o~

15

Pi-electron energy

20

25 30

Cubic: y =-0.0067x% +0.5925x2 - 3.9749x + 12.114
R®=0.9823

o 6

10 15 20

Pi-electron energy

25 30

TABLE 2. The correlation coefficient r from linear, qua-
dratic, and cubic regression model between square root stress

sum energy and 7 electron energy

Model Correlation Coeflicient r

Linear 0.962
Quadratic 0.991

Cubic 0.991

TABLE 3. Comparison of statistical parameters among the

regression models

Model R? | F-value| SE | Significant

Linear 0.9259 | 325.068 | 13.139 0.000
Quadratic | 0.9814 | 661.326 | 6.70 0.000

Cubic 0.9823 | 443.416 | 6.69 0.000
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6. CONCLUSION

The square root stress sum energy is proposed with potential predictive
capability for m-electron energy in chemical compounds.7-electron energy
plays a crucial role in the stability and reactivity of molecules, particularly
in molecules containing heteroatoms. In this study, we apply regression
models to assess the predictive relationship between square root stress sum
energy and m-electron energy. We have observed the following:

(1) The square root stress sum energy has been shown to be a strong
predictive measure for m-electron energy through regression models

(2) The statistical parameters computed from the regression models in-
dicate a minimal SE, a significant p-value (p < 0.05), and an R?
value close to 1, demonstrating a strong correlation between square
root stress sum energy and m-electron energy

(3) The square root stress sum energy is an effective predictive tool for
m-electron energy in chemical systems.Regression models applied to
m-electron energy show strong correlations, with statistical measures
such as SE, p-value, and R? supporting its predictive capacity. This
study establishes the square root stress sum energy as a promising
approach for predicting m-electron energy in molecules containing
heteroatoms.
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