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ABSTRACT: A Generalized Net (GN) model of the logic game Lines is described.
This model gives a particular answer to the Open problem: can a GN represent
an intellectual game? The model creates a basis for expanding the possibilities of
the game Lines and provides an idea for GN-interpretation of other adaptive and
intelligent games. The emphasis is placed on validating the player’s moves and
recognizing configurations in the game environment, as well as on the integration of
classical algorithms such as A* within a GN-model.
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1 Introduction

Logical games are an important tool for developing cognitive and strategic skills,
and Lines occupies a special place among them due to the symbiosis between simple
rules and significant strategic depth. The formalization of game processes through
Generalized Nets (GN, [1, 2, 5, 11, 12]) provides new opportunities for algorithmic
research, automation, and adaptability of intellectual games. GNs extend the classi-
cal Petri nets by introducing tokens with initial and subsequent characteristics and
Index Matrices (IM, [6]) with elements — predicates specifying the conditions of
transitions, which allows modeling of complex processes, including game scenarios.

The article presents a detailed description of the logic game Lines [14] using GNs.
Ideas for modifying and extending the original game Lines are discussed. This is
the first example of an GN-model of an intellectual game, which provides a partial
solution to the problem “can every intellectual game be described with a GN?”
formulated in 1991 in [3, 4].
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2 A short description of the game Lines

The digital logic game Lines is a modern computer adaptation of classic game models
aimed at activating logical thinking, spatial orientation, and strategic planning. The
game is accessible via the web platform [14, 15], without the need to install or
create a user profile, which facilitates its use in a variety of educational and informal
settings. The playing field is shaped like a square grid (usually 9 x 9 cells), with
each cell being either empty or occupied by a colored ball. At the start of each new
session, several balls of different colors appear in random positions. The player is
free to move the balls diagonally and in rows, as long as there is a free path between
the selected starting and ending positions. The main objective of the game is to
arrange at least five balls of the same color in a straight line (horizontal, vertical, or
diagonal). When a line is successfully formed, the balls are removed from the field
and the player is awarded points.

A key element of the game mechanics is that after each move that does not
result in the elimination of balls, new balls are added to random cells. This creates
increasing difficulty as the playing space gradually fills up and the possibilities for
strategic moves decrease. The game ends when there are no more free positions or
valid moves.

From an interface point of view, Lines stands out with its clean and intuitive
design. The color differentiation of the balls is clearly recognizable, and the visual-
ization of the next three balls that will appear on the playing field allows the user to
anticipate and plan future actions. This functional solution increases the strategic
depth of the game by encouraging the formation of cognitive scenarios in which the
player evaluates multiple possible move sequences before committing to an action.
This anticipatory interface mechanism not only enhances player agency but also
fosters metacognitive engagement—prompting users to simulate, compare, and op-
timize potential outcomes in working memory. By externalizing future game states
through the preview of upcoming elements, Lines reduces cognitive load associated
with uncertainty while simultaneously elevating decision-making from reactive pat-
tern matching to deliberate tactical planning.

3 A generalized net model

The GN model (see Fig. 1) describes the dynamics of the game Lines — every action
of the player, every change in the configuration of the game field, and every update
of the game result. The GN model is of the minimal reduced GN type, since in its
current form it is not necessary to take into account the time taken by the player
or the computer to make their moves. This will be discussed in the Conclusion.
Furthermore, it is not necessary to introduce priorities for transitions, places, and
tokens in the model, and the capacity of each place is 1.
The GN contains 8 transitions, 21 places, and 3 tokens (see Fig. 1):

* the token 7 represents the player who initially determines the parameters of
the game (field size, number of balls, minimum number of balls to be removed),
and through its subsequent characteristics determines the state of the current



A Generalized Net model of the intellectual game Lines

move;

* the token ¢ represents the playing field with a form of a grid with square cells,
and the positions of the balls after each move of the player or the program;

* the token k represents the counter of the points that the player receives.
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Fig. 1: The GN-model

In the first time-moment of the GN-functioning, the token 7 enters place [; with
the initial characteristic
“start of the game”.

The first GN-transition has the form:

Zy = ({l} {2} ),

where

la

T = .
lo | true

The token 7 enters place lo with the characteristic
“field size; initial number of balls; number of balls that must be generated

on the next step of the game; minimum number of balls that can disappear

in one step of the game ”.
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In the second time-moment of the GN-functioning, the token ¢ enters place I3
without an initial characteristic. The second GN-transition has the form:

Zy = ({l2, 13}, {la,l5},72),
where
| L s
ro = ly | true true .
I3 | false true

The token 7 from place Iy enters place Iy without a new characteristic and the
token ¢ enters place 5 with the characteristic

“a field with sizes shown in the last characteristic of the token m and balls

(their number is determined in the second characteristic of the token ),
randomly placed in the field cells’.

The next transitions have the following forms:

Z3 = ({lals, I8, 111, i3, iz, g, laa b, {6, U7}, 73),

where

lg Iz
ly | true false
l5 | false true
ls | true false

rg = l11 | false true .
lig | true false
li7 | false true
lig | true false
loo | false true

The token 7 from each one of the places ly4,ls,l13,l19 enters place lg with the
characteristic

“a selected ball and the location where the player wants it to be moved’,

while token ¢ from each one of the places I5, [11, l17, [22 enters place Iy without a new

characteristic.

Zy = ({le}, {ls; Lo}, ma),
where

Y = | s ly

lo | Wes Weyp '

where
We,s = “the location determined by the player is incorrect”,
Weo = Wsgs,

where =P is the negation of predicate P.
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When the predicate Wg g = true, the token 7 from place lg enters place lg with
the characteristic

“a new selected ball and the location where the player wants it to be moved

or the player like to move the previously determined ball to another location
for this ball’.

When the predicate Wg 9 = true, the token 7 from place lg enters place Iy without
a new characteristic.

Zs = ({7}, {holi1 },75),

where
- | lo In
l7 | Wrio Wrio '
where
W7 10 = “the location determined by the player is correct”,
Wz ==Wrn.

When the predicate W7 19 = true, the token ¢ from place I7 enters place l1g
without a new characteristic.

When the predicate W7 11 = true, the token ¢ from place I7 enters place l11
without a new characteristic (because the location where the player wants to move
some ball is incorrect).

Zs = ({lo}, {lisla}, 76),

where
re = | lis lig
ly | Woas Woaa
where
Wo,13 = “there is a configuration on the field containing at least the minimum
number of balls that must disappear”,
Wo,14 = Wy 13.

When the predicate Wy 13 = true, the token 7 from place Iy enters place /3 with
the characteristic

“a new selected ball and the location where the player wants it to be moved”.

When the predicate Wy 14 = true, the token m from places Iy enters place l14
without a new characteristic.
In the second time-moment of the GN-functioning, the token x enters place l12
with the initial characteristic
L(O”.
This token represents the initial, current and final counter state.
The last two GN-transitions have the forms:

Z7 = ({lio, liz, lig}, {lis, lies liry Lig}, 77),
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where
| bs lis li7 lis
_— lio | W15 false  Wigir  false
"7 lio| false false false  true
lig | false Wigis false Wigis
where
Wio,15 = “there is not a configuration on the field containing at least the minimum

number of balls that must disappear”,
Wioar = ~Wio,15,
Wig,16 = “the game is over”,
Wig,18 = “Wig,16-
When the predicate Wig,15 = true, the token ¢ from place l1o enters place I15
with the characteristic

“new balls (their number is determined in the second characteristic

of the token ), randomly placed in empty cells of the field.

When the predicate Wig 17 = true, the token ¢ from place l19 enters place l17
with the characteristic

“the playing field without the balls to be removed, according to the second

characteristic of the token w”.

When the predicate Wig 16 = true, the token s from place l1g enters place li6
with the characteristic

“final number of points received by the player”.

When the predicate Wig 13 = true, the token s continues to stay in place I3
with the characteristic

“the previous number of points plus the new points received by the player”.

Zs = ({l1a, lis }, {119,120, l21 }, 78),

where
|l l20 l21 l22
rg = lia | Wian9 Wiapo false  false
lis | false  false Wiso1 Wis 22
where

Wia,19 = “the playing field is not filled and the player can continue the game”,
Wig20 = ~Wig o,
Wis21 = “the playing field is filled and the game ends”,
Wis00 = = Wis 1.

When the predicate Wiq,19 = true, the token 7 from place l14 enters place lqg
with the characteristic

“a new selected ball and the location where the player wants it to be moved’.
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When the predicate Wig20 = true, the token 7 from place /14 enters place log
with the characteristic

“the game ends and the player has earned the points indicated as the last .

characteristic of the token k”.

When the predicate Wis21 = true, the token ¢ from place l15 enters place la;
without a new characteristic.

When the predicate Wis 22 = true, the token ¢ from place l15 enters place lao
with the characteristic

“new balls (their number is determined in the second characteristic

of the token ), randomly placed in empty cells of the field.

The GN-model described above provides an unambiguous interpretation of game
actions, traceability of processes, and the possibility of integrating intelligent exten-
sions.

4 Algorithmic implementation of the GN model for
game Lines

The algorithmic approach not only automates the game process, but also allows
for easy adaptation to extensions such as different difficulty levels, integration of
an intelligent opponent, and automated training within the GN. In Fig. 2, three
situational screens from the implementation of the Lines game using JavaScript are
shown.

LinesAl

Paamep va mpexara (X) Paamep xa mpexara (Y) :

Craprosm Tonsm Hweo cnoxHocT

Figure 2. Setting the parameters of the game Lines

The figures show a screen view of the implementation of the game Lines. Fig.
2 shows the game configuration menu, where parameters such as grid size (X and
Y), initial number of balls, and difficulty level can be set. Fig. 3 and Fig. 4
show the playing field, consisting of a square grid with colored balls on it, as well
as a configuration of single color balls. Fig. 2 illustrates the initial configuration
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with scattered balls, and Fig. 4 shows a game situation in which lines of identical
colour elements have been formed. This visualisation demonstrates the relationship
between the configuration parameters and the dynamics of the game process.

Figure 3. Initial screen of the game Lines playing field

Figure 4. Configuration of the fields in the game Lines

4.1 Predicates and move validation

An important component of the GN-model are the predicates embedded in the IMs
of the transition. They control the dynamics of the tokens and set the conditions
under which it is possible to move from input to output places. Each predicate is a
logical expression that combines a check of the game rules and the current state of
the playing field.

Formally, in terms of Lines is architecturally realized through a lightweight,
client-centric front-end technology stack grounded in HTML5, CSS3, and
ECMAScript (JavaScript), facilitating zero-installation, registration-free execution
within standards-compliant modern web browsers. This client-side paradigm mir-
rors the technical infrastructure prevalent in contemporary browser-based gaming
ecosystems — including online casino platforms — where stringent requirements for
runtime performance, adaptive responsiveness, and cross-platform interoperability
are paramount.
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Leveraging HTML5’s native multimedia APIs (e.g., Canvas, Web Audio, and
Media Source Extensions), the application delivers rich interactive experiences with-
out dependency on legacy plugins such as Adobe Flash. Concurrently, JavaScript
orchestrates dynamic game-state management, event-driven user interactions, and
real-time behavioral logic via asynchronous execution models and DOM manipula-
tion, ensuring fluid UX even under constrained computational conditions.

The system’s minimal server-side footprint—predominantly limited to static as-
set delivery and optional telemetry—coupled with an optimized, modular codebase,
renders Lines exceptionally bandwidth-efficient. This design enables robust deploy-
ment across heterogeneous client environments, including low-resource devices and
regions with intermittent or low-bandwidth connectivity. Compatibility spans desk-
top, tablet, and mobile form factors via responsive viewport adaptation and pro-
gressive enhancement strategies.

Consequently, Lines emerges as a pedagogically viable instrument for educational
contexts characterized by infrastructural constraints, device diversity, or scalability
demands — offering equitable, platform-agnostic access without compromising func-
tional richness or pedagogical interactivity.

For example:

o Wis: checks whether the position selected by the player for moving the ball
is invalid (e.g., outside the field, occupied cell, or no path). This predicate is
described as follows:

We s = ~IsValidMove(selectedyall, target_cell, board)

and it determines the possibility for the token 7, associated with the ball
selection, to move from the input to the output places;

IsValidMove(selected_ball, target_cell, board)

is a logical function that checks whether the selected ball move is valid accord-
ing to the rules of the Lines game — for example, whether the target cell is
free, located within the field, and whether there is a path from the selected
ball to it. Therefore, if

IsValidM ove returns

is true (valid move), then predicate W g is false, and vice versa — if the move
is invalid, predicate Ws g becomes true.

o W7 10: determines whether moving the ball is permissible given the current
configuration and the rules of the game. The Lines game implementation uses
a modification of the A* algorithm to search for the shortest free path between
two cells. If such a route exists, the predicate is true:

W (7,10) = A * (start, target, board) # .

Therefore, the move is valid if the A* algorithm finds at least one free path
between the selected ball (start) and the target cell (target) on the current
configuration of the board (board). That is, the predicate is true when there
is an accessible route; if there is no such route, the value is false.
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e Wy 13: checks whether, after the move, a new line (horizontal, vertical, or
diagonal) has been formed with at least the minimum required number of
balls of the same color (for example, as in the original game this number is 5)
that can be removed. Therefore,

Wy 13 = DetectLine(last_move, board, min_length)

means that after the last move (last_move), the model checks whether a line
of balls of the same color with a length at least equal to the specified threshold
(min_length) has appeared on the board (board). If such a line exists, the
predicate is true and the removal of the corresponding balls and updating of
the result is triggered; if there is not enough long sequence, the predicate is
false and the game continues without removal of balls.

e Wip,15: determines the absence of a line to be removed, which leads to the
addition of new balls to the board. Therefore,

Wio,15 = =Wy 13.

o Wig16: determines the end of the game (for example, when all cells are filled
or there are no possible moves). Therefore,

Wig 16 = (FreeCells(board) = 0) V (mHasV alid M oves(board))
formalizes the condition for the end of the game.
FreeCells(board) =0
means that there are no free cells on the board; and
—HasValidM oves(board)

means that there are no valid moves available to the player. The predicate is
true if at least one of the two conditions is met: the board is completely filled
or there are no possible moves. In this case, the model stops the cycle and
moves to the “End of game” state.

4.2 Pathfinding algorithm (A* algorithm)

Within the transitions in the GN, especially when validating the movements of
the cores, the A* algorithm (see,, e.g., [13]) is integrated, which determines the
existence of a free route between a selected ball and a target cell. In this way, each
core transition is subject to the predicates in the indexed matrix and is objectively
verifiable in real time.

e Input: coordinates of the selected token (associated with a ball), coordinates
of the target cell, and the current configuration of the playing field;

e Process: the A* evaluation function is used, which combines heuristics (Man-
hattan or Euclidean distance) and accumulated costs, with the result inter-
preted in the predicates W7 10;
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e Output: a list of cells representing a valid path, if one exists; an empty list if
no accessible trajectory exists.

In this context, the A* algorithm finds the shortest path on the board by calcu-
lating a value for each cell n:

f(n) = g(n) + h(n),

where g(n) is the actual cost to the cell and h(n) is a heuristic estimate of the
remaining distance (in Lines, the Manhattan metric or Euclidean distance is used).

The process starts from the selected ball (start) and searches for the target
cell (target), maintaining two sets: OPEN (cells to be considered) and CLOSED
(already processed). At each step, the cell with the lowest value of the function f is
selected. If it is the target, the path is found; if there are no more cells to consider,
no path exists. In the GN-model, the result is interpreted in the formal predicate
Wz 10:

o if
A x (start, target, board) # 0,

there is a valid path and the move is permissible;

e if the result is () — there is no path and the move is blocked.

4.3 Detection of lines to be removed

After each successful move, the GN-model activates a corresponding predicate from
the indexed matrix, which analyzes the state of the playing field for the presence
of a line with the minimum required length of balls of the same color. For each
direction (horizontal, vertical, diagonal), the following check is performed:

DetectLine(x, y, color, board, miniength) = Idirection|consecutive(z, y,

color, direction) > min_length.

If such a configuration is found, the line is removed and the result is updated through
the k-token. Otherwise, the process moves on to the next move.

4.4 Modelling the game cycle

The GN-model provides a complete game cycle in which the sequence of transitions
describes the dynamics of the tokens in the model:

1 initialization (Z1, Z2) — setting parameters and forming the initial configura-
tion of the field through the input characteristics of the tokens;

2 move selection and validation (Z3, Z4, Z5) — moving the tokens through se-
lection positions, determining the validity of the move through predicates in
the IMs;
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3 line check (Zg) — analyzing the configuration using predicates for the presence
of sequences of balls in a row, column, or diagonal with a minimum length;

4 updating the result (Z7) by adding the new token x, which takes into account
the change in points achieved by the player;

5 check for end of game (Zg) — evaluation using predicates for completeness of
the playing field or lack of possible moves, leading to the end of the model.

5 Prospects for expansion and applications of
the GN-model in game Lines

5.1 Opportunities for automation and intelligent agents

The formalization of game Lines through GN provides a basis for automating the
game process. The GN-model not only ensures transparency of the logic of each
action, but also facilitates the implementation of elements from the artificial intel-
ligence toolkit as an autonomous player or strategy analyzer. By expanding the
characteristics of the token , different behavior profiles of game Lines can be im-
plemented, for example:

e a stochastic opponent, where decisions on moves are made based on probability
rules;

e heuristic or strategic player, which uses algorithms to maximize the result
based on predicting the next game states;

e Learning agents, integrated through reinforcement learning or neural networks,
optimize strategy based on accumulated experience. The adaptive nature of
the agents implements a process of game strategy optimization based on ac-
cumulated experience and feedback from previous moves. This allows agents
to improve their behavior over time and increase the effectiveness of their de-
cisions in different game situations. In the GN-model, these agents will be
represented by new ones, for example, a-tokens, which will collect information
about the environment and/or player behavior through their characteristics.
Another token (-token), representing a second type of agents, will process the
information collected in the characteristics of the a-tokens for the purpose of
documenting the process and/or forecasting. Currently, there are only three
GN-models of multiagent systems [8, 9, 10].

5.2 Integration into educational and research environments

The GN-model of the game Lines can be easily used to develop interactive training
systems in which the process of problem solving and strategy implementation can
be analyzed and visualized in real time.

In educational practice, such a model serves not only as a gaming environment,
but also as a demonstration platform for analyzing algorithms, cognitive processes,
and decision-making dynamics.
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In addition, the GN-approach allows for simulations at different levels of diffi-
culty, adaptation to the age and competence of the participants, as well as the con-
duct of controlled cognitive experiments — for example, studying decision-making
time, modeling errors, or analyzing strategic choices with limited resources.

5.3 Scalability and modularity

A significant advantage of the GNs is its open and modular architecture, which allows
for easy expansion of the model without compromising its internal consistency. This
is achieved through hierarchical operators defined over GNs in [2, 5]. This allows
for the introduction of new functional mechanisms, such as:

e adding additional rules by integrating new types of cores (e.g., special balls,
bonus elements, or obstacles), as well as defining alternative conditions for
ending the game,

e implementing multiplayer modes by including more m-tokens, which allows
simulations of competitive or cooperative scenarios.

As can be seen from the description of the game Lines in its extended form,
we propose the generation of dynamic or adaptive game boards by changing sizes,
starting configurations, and difficulty parameters, which can be controlled directly
through the GN toolkit. It provides flexibility to the model and allows the creation
of different interaction scenarios. Such an approach expands the applicability of the
model by creating conditions for simulating diverse game environments and adapting
to the competence level of the participants.

This modularity illustrates the robustness and flexibility of the GN-formalism
and makes it applicable not only to static but also to evolving game environments.

6 Conclusion

The formalization and algorithmic modeling of the logic game Lines using a GN
shows that the GN is not only a theoretical apparatus but also a practical tool
for implementing complex game scenarios, i.e., the GNs can be used as a means of
describing intellectual games — a problem that has remained unsolved since 1991
(see [3, 4, 7]). This opens up a new area of application for the GNs. Until now, they
have been applied to model various components of artificial intelligence tools (expert
systems, neural networks, etc., see [7]), in biology and medicine, in the chemical
industry and economics, in transport and telecommunications, and in many other
areas (see, e.g., [1, 11, 12]).

In conclusion, we must mention that the developed approach can be adapted to
a wide class of logical and strategic games with similar dynamics, such as XO Game,
Tetris, Minesweeper and others.
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