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SPIVEY-TYPE RECURRENCE RELATION FOR FULLY DEGENERATE
BELL POLYNOMIALS

TAEKYUN KIM, DAE SAN KIM, AND DMITRY V. DOLGY

ABSTRACT. Spivey’s combinatorial method revealed an important identity for
Bell numbers, involving Stirling numbers of the second kind. This paper extends
his work by deriving Spivey-type recurrence relations for fully degenerate Bell
polynomials and degenerate Fubini polynomials. Our derivation uses degenerate
Stirling numbers of the second kind and two-variable degenerate Fubini polyno-
mials of order a.

1. INTRODUCTION

Spivey derived the following remarkable identity for Bell numbers using a com-
binatorial method (see (8), [22]):
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which has since inspired extensive research on Spivey-type relations (see [4,6,8,12-

17] and the references therein]).

Spivey’s Bell number formula in (1) provides new ways to calculate Bell num-
bers and their generalizations by relating them to Stirling numbers of the second
kind through a combinatorial identity. Its implications include the derivation of
new sum formulas for Bell numbers, extensions of the formula to more general
mathematical objects like ~-Whitney and degenerate Bell numbers, and the devel-
opment of combinatorial proofs and interpretations for these generalizations. The
following are the key implications of Spivey’s formula.

New Sum Formulas: The formula provides a fresh way to express Bell numbers
as sums involving Stirling numbers of the second kind, which leads to new sum
formulas for the Bell numbers themselves (see [22]).

Generalizations: The underlying principles of Spivey’s formula have been ex-
tended to various other combinatorial quantities, including:

e r-Whitney Numbers: The formula applies to ~-Whitney numbers, leading to
new identities and a deeper understanding of their structure (see [16]).

e Degenerate Bell Numbers: Spivey-type recurrences have been established for
degenerate Bell and Dowling polynomials, providing new insights into these re-
lated sequences (see [12,15,16]).

e Lah-Bell Polynomials: Spivey-type realtions have been extended to r-Lah-
Bell and A-analogue of r-Lah-Bell polynomials (see [8]).

e g-Generalizations: The formula has been generalized to the g-analogues of
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Bell and Stirling numbers, opening up connections to advanced topics in combina-
torics and g-calculus (see [6]).

New Proof Techniques: The formula has inspired different approaches to proofs,
including:

e Generating Function Proofs: Researchers have provided generating function
proofs for Spivey’s result, offering an algebraic perspective (see [8,12-14]).

e Use of Boson and Differential Operators: The use of boson and differential
operators provides a powerful algebraic framework for deriving Spivey-type re-
lation. This method bypasses traditional combinatorial proofs by leveraging the
correspondence between these operators (see [6,8,15]).

e Rook Polynomials: The formula has found a connection with rook polynomi-
als, providing novel, bijective proofs for certain combinatorial identities (see [4]).

Combinatorial Interpretations: The formula provides a basis for developing
new combinatorial interpretations, helping to explain the meaning of these number
sequences in terms of set partitions and other structures (see [22]).

Connections to Other Fields: Its implications extend to other areas, such as:

e Probability: Bell numbers can be interpreted as moments of a Poisson distri-
bution, and Spivey’s formula contributes to this understanding (see [13,14,17]).

e Graphs: The formula can be applied to graph theory for counting partitions
where blocks are independent sets (see [4]).

Recently, Kim-Kim showed the following recurrence relation for the degenerate
Bell polynomials (see (7)), which is given by

@ a0 = LR {1} (1)), 000, see ),

where m,n are nonnegative integers.
Letting A — 0 in (2) gives Spivey’s recurrence relation for Bell polynomials (see

®)):
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Moreover, letting x = 1 yields the Spivey’s relation in (1).
In this paper, we show the following two Spivey-type relations:
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where Bel, ; (x) are the fully degenerate Bell polynomials (see (9)), F“ A (x y) are
the two variable degenerate Fubini polynomials of order ¢ (see (11)), and F, 5 (x)
are the degenerate Fubini polynomials (see (14)). Here we note that, by letting
A — 0, we get (3) from (4) (see (10), (12)).

For any nonzero A € R, the degenerate exponentials are defined by
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where
@Woa=1, (pp=x(x=24)-(x=(m=1A1), (n=1).
The degenerate Stirling numbers { Z} ,, of the second kind are given by (see [12])
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where { Z} is the ordinary Stirling number of the second kind (see [3,18]).
The degenerate Bell polynomials are defined by (see (6), [11,12])
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When x = 1, ¢, 4 = ¢,2(1) are called the degenerate Bell numbers. Note that
limy, o, 5 (x) = @,(x), where ¢, (x) are the classical Bell polynomials given by
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The fully degenerate Bell polynomials are introduced by Kim-Kim as (see (6), [5])
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When x = 1, Bel, ; =Bel, 5 (1), (n>0), are called the fully degenerate Bell num-
bers.
Two variable Fubini polynomials of order c, faid) (x,), are given by
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As a degenerate version of Fn(a) (x,y), the two variable degenerate Fubini polyno-
mials of order ¢ are introduced by Kim-Kim as

(1n (ﬁ) e;(t)ziF,jf(x,y);—"!, (see [9]).
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When x = 0, we note that

(12) F90.9) = ()ua, (1>0).

By (11), we easily get (see (6))
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(x)o=1, x)p=xx+1)x+2)---(x+n—1), (n>1).

Note that
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where F,(x) are the ordinary Fubini polynomials given by (see [11])
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The degenerate Fubini polynomials are given by (see (6), [11])
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The reader may refer to [1,2,5,9-12,14] for the recent developments on various
degenerate versions of many special numbers and polynomials, and [3,18,20] as
general references for this paper.

2. SPIVEY-TYPE RECURRENCE RELATION FOR FULLY DEGENERATE BELL

POLYNOMIALS
By (9), we get
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Now, we observe that
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Therefore, by (15) and (16), we obtain the following theorem.

Theorem 2.1. For m,n > 0, we have
k
Beln+m A= IZOkZO(l k l{ } <Z>Bell,an(_>[,}L(_a'7k - ml)

Letting A — 0 gives Spivey’s recurrence relation for Bell numbers (see (10),

(12)):
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From (9), we note that
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On the other hand, by (5), we get
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Therefore, by (17) and (18), we obtain the following theorem.
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Theorem 2.2. For n,m > 0, we have
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Letting A — 0 gives Spivey’s recurrence relation for Bell polynomials (see (10),

(12)):
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where m,n are nonnegative integers.
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From (14), we note that
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Therefore, by (19) and (20), we obtain the following theorem.

Theorem 2.3. For m,n > 0, we have
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Letting A — 0, we obtain the following identity (see (13)):
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3. CONCLUSION

Recent research has extensively explored degenerate versions of special polyno-
mials, numbers, and functions, including gamma functions and even umbral calcu-
lus. These explorations have utilized a wide range of tools, such as combinatorial
methods, generating functions, p-adic analysis, probability theory, quantum me-
chanics, and operator theory.

In our study, we focused on degenerate versions of the Bell and Fubini polyno-
mials, specifically the fully degenerate Bell polynomials Bel, ; (x) and the degen-
erate Fubini polynomials F, 3 (x). We successfully derived Spivey-type recurrence
relations for these polynomials by employing generating functions.

Our future work will continue to investigate a variety of degenerate versions
of special numbers, polynomials, and functions, with the aim of discovering their
applications across physics, science, engineering, and mathematics.
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