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A PROBABILISTIC PROOF FOR THE SYRACUSE
CONJECTURE

IMAD EL GHAZI

ABSTRACT. We prove the veracity of the Syracuse conjecture by estab-
lishing that from an arbitrary positive integer different from 1 and 4,
the Syracuse process will never return (after ¢ > 1 steps) to any positive
integer already reached, and we conclude using a probabilistic approach.
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1. INTRODUCTION

The Syracuse conjecture is an idea introduced by Lothar Collatz in 1937.
It is also known as the 3n + 1 problem. The Syracuse conjecture has been
studied by several mathematicians, and significant results have been estab-
lished. We mention as examples the results of Steiner [1] and Tao [2].
We consider the following operation on an arbitrary positive integer [:

e If [ is even, divide it by two.
e If [ is odd, triple it and add one.

The Collatz (or Syracuse) conjecture is: This process will eventually reach
the number 1, regardless of which positive integer is chosen initially.

We can also understand this process as follows:

If [ is a positive even integer (when [ is a positive odd integer we get to
the even case by tripling [ and adding one to the result of the last multi-
plication) we divide it by 2 until we get an odd number, this last one we
triple it and we add one, or we continue dividing [ by two, until we get to 1.
This last case is possible when [ is of the form [ = 2" with n € N*. In fact
the process starting from [ will reach an odd positive integer, by tripling the
latter and adding one, we will reach a positive even integer of the form 2"
(n a positive even integer). The idea is based on the fact that half of the
numbers of the form 2" can be written 3k + 1, k been a positive odd integer,
the other half is of course of the form 3%k — 1.

We begin by showing that the Syracuse process does not admit any loop
except 1 5 4, we then demonstrate the veracity of the Syracuse conjecture
by means of Bernoulli measures carried out at each odd number reached,
including the starting point
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2. MAIN RESULTS

Let [ be a strictly positive integer:
a) If [ is an odd integer, then the next odd integer will be reached after
these two operations:

e triple [ and add one.
e divide 3/ + 1 by 2 until we have the second odd integer.

The passage from [ to the next positive odd integer reached by the two
previous operations and so on, will be called a step in the set of positive odd
integers.

b) If [ is an even integer, then the next even integer will be reached after
these two operations:

e divide [ by 2 until we have the first odd number.
e triple the odd integer resulting from the first operation and add one.

The passage from [ to the next positive even integer reached by the two
previous operations and so on, will be called a step in the set of positive
even integers.

Lemma 2.1. For every positive integer | strictly superior to 1 and different
of 4, the Syracuse process starting from | will never return to l after i > 1
steps, © € N.

Proof. We first suppose that [ is a positive odd integer strictly superior to
1.
Let mj, j € {1,...,4}, be the number of divisions by 2 after the j—ieth step,

thus m; > 1.
After i steps, we have [; the i—ieth odd number reached :
1 3 3 3 3
I = — (... I+)+D)+1)..)+1)+1). (I
o o (s (s (o GBI D) + D) + 1)) + 1) 1), (1)

If the process returns for the first time to [, after iy steps, ig € N*, then we
have:

I x 30 = [ x 250 _ o3 my g o3 my . gio=2  gm1 _gio—1.

If 3o = 1, then since [ is the first odd positive integer reached (after one
step) we have :

3=2m]-1
this leads to the equality:

(2m-3)=1
The last equality is meaningful in N if and only if { = 1 and m; = 2 which
is absurd because [ is supposed to be strictly superior to 1.
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If ig > 2, as the Syracuse process performs a loop | — [} — ls — ... —
li,—1 — | which reaches ig different positive odd integers [; # 1 for 1 < j <
1o — 1 plus , then according to equality (I) we have,

7 . ig—1 i9—2 . .
Ix (2555 mi _gioy = oLy M 4 35 o¥i My 4 gio=2y omi g gio—1 (]])

We can construct a similar equality for each [;, 1 < j <49 — 1.
We first remark three trivial cases: A
a) If m; = 1 for 1 < j < ip, then 2210:1”” —30 <0 _which is absurd
because [ > 1 and from equality (I1) we have [ x (2:30:1 mi —310) > 0.
b) If m; = 2 for 1 < j <, then [ x (2% — 3i0) = 2202 1 3 x 9%i0—4 ¢
..+ 3072 x 44 3~1 and therefore | = 1.
¢) If my > 2 for 1 < j <ig, then since 2™; — 3] =1 and since

Ix (255%™ gio) = 9% my 4 g o0 My |y gio=2  gm y gio—L,

and
I x (2230:1 mj _ gio) — QZ;O:Qmj 13 22;0:—21 My 4302y gma 4 gio—T
then,
(2™, — 31) x (255 mi _ gio) — 952 my _ gio
and thus

223&1 mj _3io :-(27774’0 ,3)X22§0=711mj +(2mi.0—173)><3><222’0=712 mj 4
oA (22 = 3) x 30072 x M1 (2™ — 3) x 3oL ([]])

Asmj > 2 for 1 < j <1, then

2220:1"%‘ — gio > 1(2220:1 mj 3io)

whence [ < 1, which is absurd because [ is supposed to be strictly
superior to 1.

The following case is when some of the positive integers m; are superior
or equal to 2 and the others (at least one) are equal to 1. Let’s suppose
that mq > 3, since [12™ — 1 = 3[, then [12™ — 4 = 3] — 3. It follows that
[12M—2_1=13x Z_Tl and [;2™~2-1 > 0 because l; > 1 and m; > 3. There-
fore, there exists a positive odd integer f = Z_Tl such that [;2™ 2 =3f +1
which is equivalent to say that f is in the loop and this is absurd. Indeed,
to perform a loop, the Syracuse process starting from [ needs to satisfy the
following condition: (my,l) = min{(z,y) € N* x 2N*4+1:2% x [; = 3y + 1},
because if we consider the reverse process which consists of finding a couple
z € N* and y € 2N* 4+ 1 such that 2% x [y = 3y + 1, then both couples
(m1 — 2, f) and (mq,l) satisfy the equality 2 x [y = 3y 4+ 1 and since
m1 —2 < mp and f < [, then the reverse process is not a loop. We can
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conclude that my =2 or my; = 1.

As we can repeat the last argument to each m; > 3, then we have m; =1
or mj = 2 for 1 < j <ip. However, this case is also absurd according to the
following argument. We note that 2% is the smallest power (on the left side
of equality (IT)) of 2 generated by a loop (if it exists) of the Syracuse pro-
cess after ig steps. Indeed, according to equality (II) this case corresponds
to the Syracuse process starting from 1 and performing a loop of ig steps,
which is equivalent to a repetition iy times of the loop 1 = 4.

We can conclude that the equality (II) is absurd for all positive odd
integers strictly superior to 1.

If [ is a positive even integer, let r = 2%1, m1 € N*, be the first positive
odd integer reached. If we suppose that the process returns to [ after i
steps (in the set of positive even integers), then it will reach r again after ¢
steps (in the set of positive odd integers), which is absurd according to what
precedes except for » = 1 and in this case [ = 4.

O

Remark 2.2. a- The lemma 2.1 confirms that the unique loop per-
formed by the Syracuse process, after one step, is 1 < 4. Any other
loop performed after i € N* steps is the repetition i times of the loop
154.

b- Ifl is a positive odd integer multiple of 3, then there is no pair x € N*
andy € 2xN*+1 such that 2° x1 = 3y+1, if not 1 would be divisible
by 3.

c- If the process returns (after i > 2 steps) to l, then we have:

Ix3i =[x 2%=mi —9Ximimi _ gy oXimimi | 3i=2yomi_g3i=l ([])

We remark that | cannot be a multiple of 3 otherwise 22§=11 mi
would be divisible by 3. Since we can generate a similar equality to
(II) for every lj, j > 1, then none of the positive odd integers l; is
a multiple of 3. Recall that 3 x1+1=2"; and 3 X l;—1 +1 = 2™i],
thus 2™l — 2™y is a multiple of 3.

If 2™ > 2™ agnd Iy —1 = 0 mod 3, then I x 2™i~™1 — 1 gs
a whole number multiple of 3. Thus there exists fi a positive odd
integer such that | x 2™i~™ =3 x f1 + 1. In order for the Syracuse
process starting from | to perform a loop it needs that (m;,li—1) =
min{(z,y) € N* x 2N* + 1 : 2% x [ = 3y + 1}. If we consider the
reverse process which consists of finding a couple x € N* and y such
that 27 x | = 3y + 1, where y is a positive odd integer, then in
our situation, we know that the couples (m;,l;—1) and (m; —ma, f1)
satisfy both the equality 2° <1 = 3y+1, therefore the reverse process is
not a loop. The loop made by the Syracuse process from 1 illustrates
the last claim. It is clear that the Syracuse process from 1 consists
of finding a couple a € N* and q such that 2 x ¢ = 3 x 1 + 1, where
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q 1s a positive odd integer, of course in this case a = 2 and q = 1.
The reverse process from 1 is to find a couple b € N* and q such
that 2° x 1 =3 x ¢ + 1, where ¢ is an odd positive integer, in this
case b = 2 and q/ = 1 and therefore the couple (b, ql) s unique as
min{(z,y) € N* x 2N* + 1 : 2% x 1 = 3y + 1}. The known loops
performed by the 3z — 1 process (1 <2 and5 — 14 -7 — 20— 5)
verify the same properties.

Let | # 1 be a positive odd integer, the lemma 2.1 states that starting
from ! the Syracuse process will never return to I. Let (Iy)g>1, I # 1, be
the sequence of odd integers reached by the Syracuse process starting from
[. Each positive odd integer [; can be considered as a starting point for
the Syracuse process, then according to lemma 2.1, the Syracuse process
starting from [ can never return to ;. It follows that the Syracuse process
starting from [ can never return to any I, k > 1.

Theorem 2.3. Starting from an arbitrary positive integer the Syracuse pro-
cess will always reach the value 1.

Proof. According to lemma 2.1, starting from an integer [, the Syracuse
process will never return to [ after i > 1 steps. Therefore starting from an
arbitrary odd positive integer [, the Syracuse process is a walk in the set of
positive odd integers without any possibility to return to any of the positive
odd integers reached before.

Remark 2.1. When [ is even, then the first positive odd integer reached
(r = 2,%1, my € N*) will be the starting point of the walk of the Syracuse
process.

Let A be the set of positive odd integers of the forme % for n > 2 such
that n is even. Concretely :
2" —1
A=
{ 3
Let I; # 1, 9 > 1, be the sequence of odd numbers, reached from [, we
carry out the following random experiment for [ and for [; after each step
1> 1:

:m is even and > 2}.

We consider the Bernoulli trial with two possible outcomes:

e "Failure” if [; € A,

e 7Success” if I; ¢ A.
Let 0 < go < 1 be the probability that [ ¢ A, which is equivalent to the
event ”Success”, then 1 — qg is the probability of the event | € A which is
equivalent to the event ”Failure”. Since the set A is an infinite subset of the
set of positive odd integers except 1 and since (2 x N*+1\ A)NA =0 and
(2xN*+1\A)UA=2xN*+1, then 0 < ¢gp < 1.

Let 0 < g1 < 1 be the probability, after one step from [, of the event ” Suc-
cess”, then 1 — g is the probability of the event ”Failure”. Since the set A is
an infinite subset of the set of positive odd integers except 1 and [ and since
(2xN*+1\{ID\A)NA =0 and (2xN*+1\{I})\A)UA =2 x N* + 1\ {i},
then 0 < q; < 1.
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Repeating the same experience after each step ¢ > 1, by considering the
set A and the set of positive odd integers except {1,1,11,...,l;_1} one has
0 <gq; <1,1 <5 <i We have the diagram below which represents the
Syracuse process whose starting point is :

le2N*+1

N

Pole A)=1—-q Po(l ¢ A)=qo

N

Pyl e A)=1- Pi(lh ¢ A) =q
Py(ly € A) =1 — Py(la ¢ A) = q2
Pi(l; c A)=1—¢q Pi(li ¢ A) = ¢

PN

FIGURE 1. the diagram represents the Syracuse process
starting from 1, provided with the probability of reaching
set A or not, after each step.

From the diagram we have
]Pl(ll € A) = ]Pl(ll S A/l)

Pi(heA)=Pi(lheAJle A)+Pi(lh e A/l ¢ A)

as we have P1(l; € A/l € A) =0 because if | € A then l; = 1, we therefore
have

]P)l(ll S A) =P1(Z1 S A/l g_ﬁ A)

which implies that the event {l; € A} is independent of the event {I ¢ A}.
Likewise we have,

Pi(ly ¢ A) =P1(lh ¢ A/l)
Pi(li g A)=Pi(lh ¢ A/l€e A)+P1(l ¢ A/l ¢ A)

as we have P1(l; ¢ A/l € A) =0 because if | € A then l; = 1, we therefore
have

Pl(ll §é A) :Pl(ll S A/l g_ﬁ A)
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which implies that the event {l; ¢ A} is independent of the event {I ¢ A}.
We repeat the same reasoning for each i € N* and we have
]P)i(li S A) = ]P)i(li € A/li_l)
Pi(li S A) = Pi(li S A/li_1 S A) + Pi(li S A/li_l §é A)
as we have P;(l; € A/l;_1 € A) = 0 because if [;_1 € A then ; = 1, we
therefore have,
]P)i(li € A) = Pi(li S A/li_l §é A)
which implies that the event {l;_1 € A} is independent of the event {l;_; ¢
A}. Likewise we have
Pi(li ¢ A) = Pi(l; ¢ Afli-1)
as we have P;(I; ¢ A/l;_1 € A) =0 because if [;_; € A then l; = 1(see point
a- remark 2.1), therefore have
]P)i(li ¢ A) = Pl(lz S A/li,1 ¢ A)

which implies that the event {l; ¢ A} is independent of the event {l;_1 ¢ A}.

On the other hand we have

Pi(li € A) =Pi(l; € Afli—1,...,11,1)
Pi(lie A)=Pi(li e A/lia ¢ A,....1i g Al ¢ A)
because if [; € A for any j € [1,...,4—1] then /;41 = 1 and therefore [; = 1,
which implies that the event {l; ¢ A} is independent of the event {l; ¢ A}
for each j € [1,...,i — 1]. Likewise we have,
Pi(l; ¢ A) =Pi(l; ¢ Afli—1,...,11,1)
Pi(li g A)=Pi(li g A/lici ¢ A,...., L g Al ¢ A)

because if I; € A for any j € [1,...,4 — 1] then l;;; = 1 and therefore
l; = 1(see point a- remark 2.1). This implies that the event {l, ¢ A} is
independent of the event {l; ¢ A} for any j € [1,...,i—1].

From the above we define the probability law P of the random variable Y;

indicating the number ¢ > 0 of independent Bernoulli trials of probability
of success ¢; €]0, 1[ necessary to obtain the first failure and we have:

PV, <i)=PleA) +P(licAl¢g A +Plyc Al ¢Al¢gA+...
+PlLieAlia g A,..., L g AlEA
which gives

P(n < Z) = Po(l € A)+P1(l1 S A)]Po(l ¢ A)+]P>2(l2 € A)Pl(ll ¢ A)Po(l ¢ A)+ ..

‘HP)Z‘(ZZ' S A)Pifl(lifl ¢ A) .. .Pl(ll ¢ A)Po(l ¢ A)

so we have

P(Yi<i)=1-qo+ (1 —q1)q0 + (1 —q2)q1q0 + - ..
+(1 = qi)gi-1---q190
hence we have
P(Y; <i) =1~ 90919263 - - - ¢i—1Gi-
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The probability that the sequence l;, ¢ > 0, starting from [, does not reach
the set A after ¢ > 0 steps is equal to gg X q1 X g2 X ... X ¢;, so the probability
of the event: the sequence l;, i > 0 never reaching the set A, is equal to
_lg_n qo X q1 X g2 X ... X g;. Since go X q1 X g2 X ... X ¢; < (max;>0 ¢j)* such that
(3 o0

0<j<iand lim (max;>9q;)' =0, then lim gy X g1 X g2 X ... X ¢; = 0.
1——+00 - 1—-+00

It follows that the occurrence of the first ”failure” after a finite number of
the previously mentioned Bernoulli trials, is a certain event.

This means that the sequence I;, i > 1, starting from [, will necessarily
reach a positive odd integer belonging to A, after a finite number of steps
in the set of positive odd integers (except 1).

Once such a positive odd integer s = 2"%—’1 (for some positive even integer
ng > 2 ) reached, the next operation in the Syracuse process is to multiply
s by 3 and to add 1, then we get to the even integer 2" after ng divisions
by 2, we get to the value 1.

According to what have been proved before, we deduce that starting from
an arbitrary positive integer the Syracuse process will always reach the value
1. O

Corollary 2.4.
Every positive odd integer | can be written as follows:

9oy _ 9¥mimy gy oXimimy | gi=2 5 g _ gi-1
= T
where © and mj, 1 < j <1, are positive integers depending on .

l

Proof. According to equality (I) and the previous theorem. O

Remark 2.5. In a future article we will prove that for every positive odd
integer p > 1, if the px + 1 (resp. px — 1) problem performs a unique loop
containing 1, then the problem px + 1 (resp. pxr — 1) reaches 1 and in this
case we will show that every positive odd integer | can be written as follows:

_ 93 jm1mi _ 9Ximimy s 9Ty pie2 oy gma _pji=1

p'L
where i and mj, 1 < j <1, are positive integers depending on l and p. And
respectively,
22;:1 mj 4 22;;11 m; +px 22;’;21 i _|_pi—2 N +pi—1
= .
where © and mj, 1 < j <1, are positive integers depending on I and p.

l
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