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LAPLACE-RUNGE-LENZ VECTOR VIA
NOETHER’S THEOREM

J. D. BULNES, H. KUMAR, T. KIM, AND J. LOPEZ-BONILLA

ABSTRACT. If the action S = f (q,q,t)dt is in-

variant under the infinitesimal transformatlon t=
t+er(q,t), g = q¢r + €&-(q,t), r = 1,...,n, with
€ = constant < 1, then the Noether’s theorem al-
lows construct the corresponding conserved quan-
tity. The Lanczos technique employs € = ¢n41 as
a new degree of freedom, thus the Euler-Lagrange
equation for this new variable gives the Noether’s
constant of motion. The Kepler problem has a dy-
namical symmetry, then here we show that the con-
servation of the Laplace-Runge-Lenz vector is im-
mediate if we apply the Noether’s theorem, in the
Lanczos approach, to this symmetry.
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1. INTRODUCTION
In the functional (the concept of action was proposed by

Leibnitz [1]) S = f (q,q,t)dt we apply the infinitesimal
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transformation (e = constant < 1):
(1) £:t+6T<Q7t>7 dT:qT+6§T<Q7t>7 T‘:17"'7n
that is:
. t2 di \ -
(2) S=[ L (q, —C{J) di,
th dt

then we say that the action is invariant if:

to
3) S=5+1c / L g, vy,
. dl

hence the Euler-Lagrange equations [2-5] corresponding to
the variational principle 65 = 0:

_d (dL\ oL B
(4) Er_dt(aq;)aqr(L T—l,...,n
remain intact. Noether [6] studied the case @ = 0, and she
suggested [7,8] to Bessel-Hagen [9] the analysis of (3) with
Q # 0 [10]

Therefore, we have a symmetry up to divergence and
Noether [6,9-13] proved the existence of the Rund-Trautman
identity [11,12,14,15]:

oL OL . OL oL . . dQ
(5) 6_%fr+3—%§r+§7—(a—%qT—L)T—E—0»
which can be written in the form:
d (0L . oL .
() E(a_q-rfr_HT_Q)_(gr_QTT)Era H_a_q.ch_L.

In (5) and (6) we use the convention of Dedekind [12,13]-
Einstein because we sum over repeated indices. The Rund-
Trautman identity offers a more efficient test of invariance
[12]. If in (6) we employ the Euler-Lagrange equations (4)
we deduce the constant of motion associated to (1):

(1) 0L

—¢&. — Hr — Q = Constant,
A
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hence, we have a connection between symmetries and con-
servation laws [7,11,12,14,18-21].

In Sec. 2 we exhibit the Lanczos technique [2,22,25,32,
33] to obtain the Noether’s conserved quantity (7) as the
Euler-Lagrange equation for the parameter €(¢). In Sec. 3
we consider the Kepler problem [26,27] and we apply this
Lanczos method to its dynamical symmetry | [5], pages 99-
100] to obtain the conservation of the Laplace-Runge-Lenz
vector [28-31].

2. LANCZOS APPROACH TO NOETHER'S THEOREM

Lanczos [2,22] applies the infinitesimal transformation
(1) (with € = constant) to the action (2) and uses expansion
of Taylor up to first order in €, thus:

- t2 /9L 8L . OL
= _— _— _— —H'
(8) S S+6/t1 (aqrfﬁra%fﬁr 57 T) dt,

hence this integrand is equal to %, in harmony with the

Rund-Trautman identity (5).

Now Lanczos proposes to employ (1) into (2) but con-
sidering that e is a function, therefore up to 1th order in
€

~ b2 dQ . (0L bz
9) S—/t1 |:L+EE+E<8(]}€T_HT>:| dt—/t1 Ldt,

and he accepts that € is a new degree of freedom with its
corresponding Euler-Lagrange equation:

d (0L 0L
It is clear that:

OL oL oL  dQ
E—afq.rfr*HTy a. =

de  dt’
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therefore (10) implies (7). In other words, if the param-
eter of the symmetry is considered as an additional de-
gree of freedom of the variational principle, then its Euler-
Lagrange equation gives the Noether’s constant of motion.
We comment that Neuenschwander [19] obtains the con-
served quantity (7) for the case Q = 0.

The works [32,33] have applications of this Lanczos tech-
nique to some singular Lagrangians employed in [13,34-36].
In [2,37] and [38] the Lanczos method is applied to electro-
magnetic and gravitational fields, respectively.

3. DYNAMICAL SYMMETRY IN THE KEPLER PROBLEM

Here we consider the Lagrangian for the Kepler problem:

k N N
() L=2( 4+, r=valt gt F=aity]

with the conservation of the angular momentum whose
magnitude is given by:

(12) I =m(zy — yi) = mr0.

Now in L we apply the following transformation [ [5], pages

99-100]:

(13) T=x+e, J=yt+e, (=t
where €; and €y are constants < 1, to obtain:
~ kx ky
L—-L= _617’_3 _62’)"_3
k k
=—€1—5 cost) — e;— sinf
T T2

= —¢ mTkécose - ezmTkésin 0,
that is:

(14) L=L+— — (—€18inf + ey cosb) |,
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hence (13) is a dynamical symmetry of L [5], and there-
fore we shall use the Noether’s theorem [in the Lanczos
approach| to deduce the conservation law associated with

(13).
The Lanczos technique asks to employ in (11) the trans-
formation (13) with €;(¢) and ex(t) as new degrees of free-

dom, then:
~ k k
(15) L—L:élm:'c—el—?—i—égmy—eg—g,
T T

and the Euler-Lagrange equations:

d (0L oL .
(16) E<8_ej>_8_ej’ Jj=12,

imply the expressions:

L] (mi) + ke d <m;t + mTk sin9> =0,

dt 3 dt
d . ky d . mk
%(my)Jrﬁ =2 (merlcosH) =0,

which generate the following two constants of motion:
(17) mlt +mksin® = —cg, mly —mkcosf = c;.

It is easy see that (17) express the conservation of the
Laplace-Runge-Lenz vector [4,26,39)], in fact:

ﬁxf =m (a:i + yj) zlk = ml (y% — ;Ej) ,

—mki = —mk (cos 01 + sin@j') )
,

therefore:
Pl — mk; = (mly — mkcos0)i — (mld +mksinf)

(18) X )
=1t + caj.
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Thus, the Lanczos method gives a simple process to apply

the Noether’s theorem [40-43], in this case, it was possi-
ble to determine the conservation law associated with the
dynamical symmetry (14) for the Kepler problem.

Remark 1. If in (8) we use 7 and & as new degrees of
freedom, then the corresponding Fuler-Lagrange equations
imply the equations of motion (4) and the known relation
dH _ _ 9L

dat ot

Remark 2. [t is clear that the process shown here to obtain
the conservation of the Laplace-Runge-Lenz vector is based
on the premise that (14) does not alter the equations of
motion generated by the Lagrangian (11).

Remark 3. Regarding the Lanczos method [44]: The in-
troduction of € as an added dynamical variable is not an
inherent necessity because the equation we obtain by vary-
ing with respect to € cannot be a new information. It yields
something that is a consequence of the equations of motion
and is obtainable by the proper manipulations with these
equations. But Noether’s principle gives the deeper signifi-
cance for the existence of conservation laws.
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