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Abstract

In this article theoretically, we calculate numerical conductivity of red blood cells in a
blood vessel choosing arbitrary viscosity coefficient functions and on applying MATHEMAT-
ICA algorithms. For this purpose, first we construct a mathematical model for computation
of the conductivity of red blood cell on applying the lubrication theory of a fluid (blood) in
a vessel containing red blood cells, white blood cells and plasma. We derive a definite inte-
gral formula involving a viscosity coefficient function for conductivity of a red blood cell. On
using Ruffa-Toni’s definite integral techniques, numerical conductivity of red blood cells is
computed. We also construct their matrix representations. This theory may be used in various

medical scientific studies.
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1 Introduction

Pertaining to the preliminary historical development of study of conductivity of red blood cells,
we describe certain models and its importance in medical sciences done so far by various authors.
Hoetink et al. [8] developed a model on using the Maxwell-Fricke theory for computing the blood
conductivity of a diluted suspension of ellipsoidal particles, which simulates blood in a steady flow
in a rigid vessel. On considering RBC' s in form of ellipsoidal particles, they showed that, due to
high values of shear stress, the RBCs deform and orient such that one of their long axes is parallel
to the streamlines of the blood flow. By this configuration a substantial change in the electric
current path through the blood [8, 10] happens. In particular, the electrical conductivity of blood in
the direction of flow increases due to channel-like paths available between the aligned RBCs (see
in [9]). On the other hand, Gaw et al. [6] extended the investigation and reported the effects of
pulsatile blood flow on electrical conductivity in a rigid vessel. Theoretically and experimentally,
it was shown that, when the velocity increases during systole, there is a robust linear relationship
between the average velocity and the conductivity of the blood. Similarly, a decrease in impedance

is observed when blood velocity decreases.

Figure 1: Red Blood Cells

The orientation and deformation of RBCs are the cause of anisotropic blood conductivity. Sev-
eral experimental studies have investigated the behavior of RBCs in Couette and Poiseuille flow
fields, including Fischer et al. [5], Goldsmith et al. [7], Keller and Skalak [11], Bitbol [4], Schmid-
Schonbein and Wells [15]. Above studies suggest that RBCs exhibit two types of motion:

First, unsteady motions like flipping, tumbling, and rolling, in which the biconcave shape of
RBCs remains unchanged [19].

Secondly, a steady motion where RBCs deform into ellipsoidal particles via high shear stress.

In the steady motion, the RBCs maintain a steady orientation with their membrane circulating



Numerical conductivity of Red Blood cells

around the interior viscous fluid (cytoplasm) [1]. This motion is called tank-treading, where the
rotating motion of the membrane transfers the tangential stresses of the flow to the cytoplasm.

The models developed by Hoetink et al. [8] and Gaw et al. [6] inspired several applications
for the simulation of bioimpedance signals [17,18], and in the field of aortic dissection [3,2]. Such
type of approaches also focused on the analytical and numerical solutions for one-dimensional
computations of the electrical conductivity of blood, and none offered the possibility to model and
compute the 3-D anisotropic electrical conductivity of blood as a field variable. For example, in
the study of Badeli et al. [2] showed the important application of the ICG method in detecting
aortic dissection. However, the isotropic assumption imposed by the one dimensional formulation
led to ignored changes in the blood conductivity values due to varying flow direction, local flow
hemodynamics, and disturbances due to pathology (see in [9]).

Motivated by above work, in this article we calculate numerical conductivity of red blood cells
on choosing arbitrary viscosity coefficient functions and on using MATHEMATICA algorithms.
We derive a definite integral formula involving a viscosity coefficient function for conductivity of
a red blood cell. We apply Ruffa-Toni’s definite integral techniques [14] to compute numerical

conductivity of red blood cell.

2 Motion in Narrow Capillaries from the Stand Point of Lu-
brication Theory and Computation of Conductivity of Red
Blood Cells

Besides of the theories illustrated in the Section 1, we introduce the theory of Lighthill [13] in
which a theoretical study of the motion in narrow capillaries from the stand point of lubrication
theory is presented. This lubrication theory is concerned with fluid motions in which there is a
direct balance between pressure gradients and viscous forces. The inertia plays a totally insignifi-
cant role in the balance. Also, the small blood vessels in general are places where inertial effects
are totally negligible so that the Reynolds number R is such that R < 1. According to this the-
ory, within the fluid a centripetal pressure force on the red cell ensemble may continue to act,
because interactions between red cells, at given volume concentration, are greatest where they are
spinning fastest, that is, where the fluid vorticity is greatest near the wall of vessel. These forces
of interaction between cells are also generated in lubricating layers between spinning deformable
cells. Applying this theory of lubrication, for the conductivity, o, of a red blood cell in an organ is

calculated for the viscosity p, which varies with distance r, presented in the form [13]

o= (2a%)7" /Oa(u(r))lrgd'r, @2.1)
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where, a is a radius of red blood cell.

Recently in the Conference,IC-BDA&C-MM-NS-2025, held on July 28-30, 2025 at School
of Computational and Integrative Sciences, JNU New Delhi, India in collaboration of Vijnana
Parishad of India, Kumar [12] has presented a mathematical model to formulate the conductivity,
o, of red blood cell in a vessel on application of above lubrication theory and applying the formula
such that for a velocity of the non-Newtonian fluid, v(r), and p(r), a viscosity coefficient functions
of r, a radial distance, then the stress function, 7(r) acting on the vessel wall, is given by

7(r) = —pu(r )d” ") and derive an equality

/Oa{u(r)}’lr?’dr = - /OG{T(r)}’lr‘gdv(r) =p, 2.2)

provided that a is the radius of red blood cell, p is an arbitrary constant.
Now on setting p = 2a2c in the relation (2.2), we get

o= (2(12)71 Aa{u(r)}’lrg’dr, (2.3)

or

—(20%) " /OG{T(T)}‘1r3dr. (2.4)

On application of formula (2.3), near the standard value of conductivity, o, of RBC, Kumar
[12] investigated various viscosity coefficient functions and obtain the values of conductivity of
red blood cells in a vessel.

We improve the formula (2.3) as on setting for arbitrary constant p due to (2.2), given by
pP=7 402680 where a is radius of the red blood cell and ¢ is the conductivity of the fluid.

We find the definite integral formula for the conductivity, o, of the red blood cell in the form

_ 4.422268 /a{u(r)}_1r3dr. (2.5)
0

The integral (2.5) becomes too useful in obtaining numerical values of the conductivity of a

red blood cell of the radius of length a.
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3 Ruffa-Toni’s Definite Integral and Computation of Conduc-
tivity of the Red Blood Cell

In this section, we consider the definite integral formula due to Ruffa-Toni [14] given by

8 w1
/ G(t)dt = (8 — ) 22 P (=)"G (a4 n(B - a)27) (3.1)
@ n=1
Then making an appeal to the formulae (2.5) and (3.1) we obtain
4.45268 Z 221 n+1 (na27)® .
o= Y .
p(na2—»)" G2

Now setting viscosity function u(r) for different curves for known finite radius of red blood
cell in the formula (3.2), we present following observations in Table 3.1

Table 1: Table 3.1: The conductivity of Red Blood Cell for different viscosity functions

Serial | Viscosity | Radius | Conductivity o , in Ruffa-Toni’s definite | Via The
No. function, of red integral form MA THEMAT]CA, Stalndar?
(r) blood the value of value of
# cell. a conductivity, o conductivity
s of human
red blood
cells
(HRBCs) at
25°C
calculated
approxima
-tely in
[16]
I ue) s o o 0.5566
=72 |x1075 _ 445268 it =0.556586 | SAR/m
ZZ 14 Z( 1)n+1(na2 p)
p=1 n=1
2. u(r) 5 2P-1 0,
=r® [x1075| gy = 4452682 2-p Z (—1)n+1 | =8.9054 x 10
p=1 n=1
3. u(r) 5 n+1 | 03
=t |x1075| o 4452682 Z D = 257189625129
(na27?) | x 10
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4 Algorithms to Calculate the Conductivity of Human Red Blood
Cells for Different Viscosity Functions via MATHEMATICA

In this section, we introduce MATHEMATICA coding to calculate the conductivity of human red
blood cells via Ruffa-Toni’s definite integral for different viscosity functions, p(r) as given in
above Table 3.1:

Case 4.1. When yi(r) = 12, oy = 2492688 570 9= 5727 L 1)+ (na277),

then via MATHEMATICA the numerlcal value of ¢y is found by an algorithm given by

a=>5*10" -5

ol = (4.45268/a)* Sum [2" — p* Sum [(—1)"(n + 1)* (n*a*2" — p),{n,1,2"(p — 1)}], {p, 1, 20}]
N[o1,20]

89053.52

Case 4.2. When i(r) = r® 0 = 49208 §575¢  9=p 572" (1)1, then via MATHEMATICA the
numerical value of o, is found by an algorlthm given by

a=>5*10" -5

02 = (4.45268/a)* Sum [2" — p* Sum [(—=1)"(n + 1), {n, 1,2"(p — 1)}, {p, 1, 20}]

N[o1,20] 89053.52

Case 4.3. When u(r) = 1!, 03 = £4208 570 99 52271 U2 then via MATHEMATICA the
numerical value of o3 is found by an algorithm given by

a=510" -5

03 = (4.45268/a)* Sum [2" — p* Sum [(—1)"(n + 1)/ (n*a*2" — p),{n,1,2"(p — 1)}], {p, 1, 20}]
NJo3,20]

2.5718962512921825 x 1010

S Matrix Representation of Red Blood Cells

The Table 3.1 shows that the conductivity formula given by

0o 2P—1
. 4.45;268 S 2 S (1) (na2 ) 5.1)
p=1 n=1

gives the value of conductivity near the standard value 0.5566SAR/m. Therefore, we generalize

this formula (5.1) for matrix representation of RBCs as in the form

2P—1

- O‘”ZQ PY (1) (na2 ) Vi= 1,2, omij = 1,2, . (5.2)

n=1
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Here, o;;Vi = 1,2,...,m;j = 1,2,...,q are arbitrary constant near the value 4.45268. In

(5.2), considering the constants such that

a1 = 4.45268, a2 = 4.452680001, a3 = 4.452680002, cve; = 4.452680001,
Qo9 = 4.45268, ag3 = 4.452680002. (5.3)

Using MATHEMATICA algorithm given in case 4.1 for different constants given in (5.3) and
on using the formula (5.2), we obtain the conductivity of various red blood cells of similar radius,

given by

011 = .55658606160163881516, 012 = .55658606172663904754,
013 = .55658606185163939095, 091 = .55658606172663904754,
092 = .55658606160163881516, 023 = .55658606185163939095. 54

Then, the conductivity of six RBCs given in Figure 1.1 is constructed in the matrix representa-

tion as

r S(a) S(a) S(a)
oy o

11 1z Qi3 S(a) S(a) S(a)
Qo1 Qp
| Q21 Q22 Qg S(a) S(a) S(a)
1 [ 1.6697581851 1.6697581851 1.6697581851
3 | 1.6697581851 1.6697581851 1.6697581851

B [ 0.5565860617 0.5565860617 0.5565860617 (5.5)
| 0.5565860617 0.5565860617 0.5565860617 ' '

W =

Here in (5.5), S(a) = £ 3% 277 "2 (= 1)"* (na27P).

On making an appeal to the observations and formulae (5.1) to (5.5), we develop a generalized

formula

1 Q11 o Qy S (an) .S (alm) o1t Oim
- = oL : (5.6)
m

Am1 - Omm S (aml) - S (amm) Om1 " Omm

provided that 4.45286 < ay; < 4.45299, S (a;;) = £ 3% 277 227 H(—1)"* (nay;27P), then
forall j = 1,2,..., m; by the formula (5.6), we find

.5565860660 < 0;; < .5566022492. (5.6)
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6 An Interpretation and Conclusion

An application of Ruffa-Toni’s definite integral technique converts the formula into the algorithm
to measuring the numerical value of conductivity of red blood cells in the form

[e'e) 2P —1
4.45268
o= > o> (=) (nay27P) Vi = 1,2, m. 6.1)
JJ p=1 n=1

In this case, the viscosity function is u(r) = r? and the calculated value of conductivity of
red blood cell matches to its standard value (see in [16]). Therefore in our investigation, if we
observe the viscosity function y(r) along the radial distance 7 of the red blood cells and then plot
the graph, if it is parabolic, then we get the conductivity of red blood cells in standard form. On
the other hand, in other cases 2 and 3, the conductivity is too high. Hence, by case 1, the formula
(5.2) is very suitable and applicable in various medical processes. This study is applicable for the
simulation of bioimpedance signals [17, 18], in the field of aortic dissection [3, 2], ICG method in
detecting aortic dissection [2] and so on.

By our results and values obtained in the Sections 4 and 5, the matrix representation of RBCs

of Figure 1.1 is constructed which seems to be interesting.
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