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Some notes on Pontryagin’s Maximum Principle
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ABSTRACT. Dynamic optimization plays a central
role in many scientific and engineering disciplines,
where the objective is to determine a control strategy
that optimizes a given performance criterion over
time. Pontryagin’s Maximum Principle (PMP),
developed in the late 1950s by Lev Pontryagin and his
collaborators, provides a powerful theoretical
framework for addressing such problems. This article
presents an overview of the Maximum Principle,
outlines its mathematical foundations, and discusses
its effectiveness and applicability in solving a wide
range of dynamic optimization problems.
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1. Introduction

Dynamic optimization involves making decisions over time in systems governed
by differential equations. Applications range from economics and robotics to aerospace
engineering and biology. Traditional methods for solving such problems include the
calculus of variations and numerical optimization techniques. However, these approaches
often fall short when handling complex systems with constraints on control and state
variables.

Pontryagin’s Maximum Principle emerged as a landmark development in optimal
control theory [6]. It transforms the original dynamic optimization problem into a
boundary-value problem, thus providing necessary conditions for optimality in the form
of a Hamiltonian maximization condition. This principle is now regarded as a cornerstone
of modern control theory.

Remember that optimal control theory began to take shape as a mathematical

discipline in the 1950s [2,4,5]. The motivation for its development were the actual
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problems of automatic control, satellite navigation, aircraft control, chemical engineering
and a number of other engineering problems.

Optimal control is regarded as a modern branch of the classical calculus of
variations, which is the branch of mathematics that emerged about three centuries ago at
the junction of mechanics, mathematical analysis and the theory of differential equations.
The calculus of variations studies problems of extreme in which it is necessary to find the
maximum or the minimum of some numerical characteristic (functional) defined on the
set of curves, surfaces, or other mathematical objects of a complex nature.

The development of the calculus of variations is associated with the names of
some famous scientists: Bernoulli, Euler, Newton, Lagrange, Weierstrass, Hamilton and
others. Optimal control problems differ from variation problems by the additional
requirements imposed on sought solution, and these requirements are sometimes difficult
and even impossible to fit applying for solving the methods of the calculus of variations.
The need for practical methods resulted in further development of variation calculus,
which ultimately led to the formation of the modern theory of optimal control. This
theory, absorbed all previous achievements in the calculus of variations, and it was

enriched with new results and new content.

2. Formulation of the Optimal Control problem

A formulation of the problem of optimal control includes a control objective, a
mathematical model of the controlled object, constraints and a description of a class of
controls.

The control objective is a request expressed in a formal form for the behavior of a
controlled object. An objective of the control can be, for example, a transfer of the
controlled object from one position to another in a finite amount of time or to keep the
trajectory of motion within given limits, etc. Often the objective of control is to optimize
(maximize or minimize) an objective functional, that is, a numerical parameter specified
on a set of processes. The values of the objective functional characterize a “quality” of
processes. For the optimization of a functional procedure, we allocate the best quality

processes from various ones.
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A mathematical model of a controlled object is some law of transformation of
controls into trajectories of an object. It can be set by a system of ordinary differential
equations, partial differential equations, integral equations, recurrence relations, or in
other ways.

Constraints are additional conditions for processes that arise from the physical
meaning of the statement of a control problem. The requirements related with the safe
operation of a controlled object lead to phase constraints on a state vector or to mixed
constraints on state vectors and controls simultaneously. In particular, the initial
conditions for differential equations can be regarded as the simplest phase constraints.

The class of controls is defined by specifying the analytical properties and the

range of control variables. For example, we can use class of controls K(R — U) consists
of piecewise continuous functions 4(¢): R — R” with values in a compact U — R". But

optimal control can use more general classes of summarizing or measurable controls that
are dictated by the physical meaning of the problem or by the wish to ensure the
solvability of the problem. A wider a class of controls allows for greater possibility for
the optimal control to exist. However, the expansion of the class of controls requires
using a more sophisticated mathematical apparatus and details of the theory of functions,

functional analysis and differential equations.

Objective functionals
By [1,3], in optimal control theory, we traditionally consider three types of

objective functionals defined on the processes x(¢),u(z) of a system of differential
equations

X = f(x,u,t), x(t,))=x,- (1)
(a) Terminal functional (Mayer functional)

J, = D(x(t),1,) )
is defined by a scalar function d(x,s) on the ends ( x(8),t) of the integral curves
(x(2),1), where ¢, is fixed or not fixed in advance in a given moment of time, 7 > ¢,.

(b) The integral functional (Lagrange functional) is given by a scalar function F'(x,u,?)

in a form of definite integral
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J,= ]-F(x(t),u(t),t)dt. 3)

fo
Function F(x,u,t) is assumed to be continuous with respect to its arguments X,u,f and
has continuous partial derivatives with respect to state variable x. Then, a complicated
function ¢ — F(x(¢),u(t),t) is piecewise continuous on a segment [%-41, and the
existence of the integral (3) is guaranteed by the appropriate theorem of mathematical
analysis.
(c) Mayer-Bolts functional
)
Ty = @(x(t), ) + [ FOe(0),u(t), 1), @)

is the sum of the functionals (2) and (3).
If the function (x,7) belongs to the class C (R"xR—>R) and

D(x,,t,) =0, then the terminal functional can be easily transformed into an integral

one. Indeed, according to the Leibniz-Newton formula

D(x(1)),1,) = jd@(x(t),t) :_f[CI)x(x(t), 1)’ x(t) + @, (x(1),1)]dt =

= _f[CDX(x(t),t)’f(x(t),u(t),t) +®@,(x(2),0)]dt.

The integral in the right-hand side is a Lagrange functional with a generating function
F(x,u,t) =@ (x,t) f(x,u,t)+D,(x,1).
A reverse transition from the integral functional to the terminal functional is carried
out by extending the phase space, that is, by the introducing an additional phase variable

x ., according to the formulas

n+l
X, =F(xut),x,()=0.
Appending these relations to the conditions for (1), we obtain an extended system of

differential equations and initial conditions

X=f(xut), x, , =F(xut), x(t,)=x,, x,,,()=0.
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If  x(¢),u(t) is a process of the system (1), then a ftriple x(¢),

x, ()= IF(x(r),u(r),r)dr’ u(t) will be a process of extended system. From here,

fo

we have
]‘F(X(t),U(t),t)dt =x,.,(t)

when ¢ =¢,. Consequently, the integral functional in the system (1) coincides with the
terminal functional in an extended system with a generating function ®(x,x,,,)=x,,, -

The above methods are then used to transform the objective functional and
constraints to a terminal or integral form. Thus, it is important that when constructing a
theory, we can only apply functional of one type. The results for the other types of

functional are then obtained by using the above transformations.

Constraints on the Ends of a Trajectory. Terminology

Let #,,¢, be fixed or not in advance moments of time, 7, < ¢,, and let x(7),u(?)
be an arbitrary process of the system (1). The points x(z,) and x(¢,) are referred to as
the left and right ends of a trajectory x(t), and the pairs (x(¢,),2,), (x(z,),t,) are
referred to as the left and right ends of an integral curve (x(t),t). The most general
constraint on the ends of an integral curve has the form

(x(2y), x(2,),2,,) €L,
where I' is a given set of Cartesian product R” X R" X Rx R. If this inclusion
unambiguously (ambiguously) defines the points x(7,), x(¢ ), we speak about fixed
(mobile) ends of a trajectory. We apply the same terms to the ends (x(¢,).7,),
(x(z,),t,) of an integral curve or to the moments of time 7,,7 . The end of the

trajectory that does not impose any restrictions is referred to as the free end of a
trajectory. There may be different combinations of requirements for the ends of integral
curves in optimal control problems. For example, the left end of an integral curve can be

fixed and the right end can be a free end at the same time when the moments ¢,¢, are

fixed or mobile. There can also be fixed ends of trajectory while the moments of time
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t,,t, are mobile, and so on. Several types of problems that will be the subject of our

further study are now considered.
We consider several basic optimal control problems introduced in [1,3].

According to classification

The Simplest Problem of optimal control (S-problem) consists of minimizing a terminal

functional on a set of processes x(z),2(¢) of a controlled system with fixed left and
right ends of a trajectory with fixed end points of time. This problem has the form
J =D(x(t,)) = min,
xX=f(x,u,t), x(¢,) =x,, ucl, te(t,,t,],
where a scalar function d(x) belongs to the class C,(R" — R). Regarding the
function f°, the range of control U and the class of control, the agreements that we set up

earlier remain valid. The objective of control, the mathematical model of the controlled
object, the phase constraint in the form of the initial condition and the restrictions on the

vector of control are represented in an S-problem.

Two-point Minimum Time Problem (M-problem) is an optimal control problem with

fixed endpoints of a trajectory and mobile moments of time:
J =t —t,— min,
X = f(x,u,t), x(¢,) =x,, x(t,)=x,,uclU, t,<t,.
Here x,,x, are the given points of space R". The problem is thus to minimize a
transition time from the point x, to the point x, along the trajectory of a system of

differential equations of a controlled object by means of an appropriate control and end

points of time £,,¢, . The solution of the problem is trivial when x, = x,. Leaving aside

this case, we assume that x,, # x, .

General Optimal Control Problem (G-problem) is the problem that has mobile ends of

an integral curve:
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Jy =D, (x(8,),x(2),t,,¢,) = min,

<0,i=1,...m

J, =q>,,(x(t0),x(tl),to,tl){ e

=0,i=m,+1,...,m,

x=f(xu,t),uecl,t,<t,.

Here @ ,...,®, are the given functions of the class C,(R" xR" xRxR —> R),

m
m, is an integer nonnegative number, and m is a natural number. If m, =0 or
m, = m, then the G-problem only has constraints-equalities J, =0, i =1,...,m, or
only constraints-inequalities J, <0, i =1,...,m , respectively. The process is said to be
a quaternion x(7),u(?),t,,¢, that satisfies all conditions of the G-problem except,
possibly, the first condition. A process x(?),u(%),?,,t, is regarded to be optimal if for

any other process ¥(7),(t),1,,, » the following inequality is true

D (x0(2,), X8, 2y, 1,) < P (), (1) 1o ) -

The G-problem consists of determining the optimal process.
Note that S-problem and M-problem are particular cases of G-problem. We can easily get
them specifying objective functional and constraints in G-problem.

Along with above problems of optimal control, there are more special and
particular forms that are not considered in this review.

The basic tool for solution of the problems of optimal control is maximum
principle. According to [1], we formulate it for optimal control problems with terminal

functional.

3. Formulation of the Maximum Principle
Theorem 1 (maximum principle for G-problem) Let x(¢),u(?),t,,t, be an optimal
process of the G-problem. Then there exists a vector A =(A,,,...,A, ) and a continuous
solution y(t) of a conjugate system of differential equations
w =—H (y,x(1),u(),t),
satisfying conditions:
1) non-triviality, non-negativity and complementary slackness
A#0, 4 20,i=0,....,m,, AD,(x(2),t)=0,i=1,...,m,;

2) transversality

29



30

D. Dolgy

w(ty) =L, (A,x(®).1), w(t,)=—L,(1,x(2),1)
L, (A, x(6),1)=0, L (A, x(0),£) =0;
3) maximum of Hamiltonian
H (y (1), x(0),u(0), ) = max H(y (1), x(1),u,1) » t €[5,1,]

with functions

L(A,x°,x"t,,t) = Z/Iid)i(xo,xl,to,tl), H(y,x,u,t)= Zl//jfj(x,u,t)
=1

i=0

Theorem 2 (maximum principle for S-problem) If x(z),u(t) is an optimal process of
the S-problem, then the condition of the maximum of the Hamiltonian
H(y(2),x(2),u(),t) = max H(y (1), x(¢),u,1)
uelU

holds at every moment t €[t,,t, ], where y(t) is the corresponding solution of the

l/./ = _H(W,X(t),u(f),t) .

conjugate Cauchy problem {
w(t)=-P,(x(1,))

Theorem 3 (maximum principle for M-problem) If x(z),u(?),t,,t, is an optimal
process of the M-problem, then there exists a non-trivial continuous solution y(t) of a
conjugate system of differential equations
Y =—H (y,x(0),u(),t),
such that
Hy(1),x(t),u(t),t) = max Hy(t),x(t),u,t), t [t,,¢],

H(y(ty),x(ty),u(ty),t,) = Hy(t),x(¢),u(t,),t) =0,
where H(w,x,u,t) =yw'f(x,u,t).

Since S- and M-problems are particular cases of General problem, we can use only
Theorem 1 for solution of them. Nevertheless, it turn out that applying special conditions

(Theorem 2 and Theorem 3) are more effective.
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Example of solution of G-problem. Determine an optimal process in the General

problem

ul<1,¢ =0,

. X =X,
t1—>m1n,{. § . x(0)=¢, x,(0)=4¢,, x,(¢,) =0,
2
where & , &, are some real numbers, &, #= 0.

Solution. We then construct the Lagrange function and the Hamiltonian

L=ﬂ,0t1 +il[xl(O)—§I]+22[x2(0)—§2]+23x2(t1), H=l//1x2 +yLu

and write a conjugate system of differential equations and transversality conditions

{l[/lzo {l/ll(o):/ll {Wl(tl):() A+ A _
. s > , A+ Ax, (1) =0
v, =¥ w,(0)=4, v, (1) =—4,
From here, we obtain
wi()=4=0,y,(1) =4 =—4,

and consequently, A =(A4,,4,,4,,4;) =(A4,,0,4,,—A,) . From the condition of the
maximum for function H by control, we obtain u(¢) =signy, (¢) =sign A, . Then the
last transversality condition has the form

Ao+ 4%, (1) = A — Au(t)) = A4, — Asign 4, = 4, _|ﬂ'2| =0.
If 4, =0, then we have A4, =0 from the above equality, which leads to the triviality
of the Lagrange multipliers and contradicts the maximum principle. Therefore, without a
loss of generality, we set A, = ‘ﬂ,l‘ =1. As a result, we determine the structure of an

extreme control #(¢) = sign A, . This is a constant function that takes the values +1 or -

1. Control 2(¢) =1 generates the trajectory

xl(l‘)=§+§21+§l, X, () =t+S,

that intersects the line x, =0 in moments 7, = —&, for &, < 0. Analogously, the

trajectory corresponding to control u(z) = —1

2

xl(t) z—%—l—cle—l—fl, xz(t):_t"'é:z

intersects the line x, =0 in moments ¢, = &, for £, > 0.
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4. Advantages of the Maximum Principle

Pontryagin’s Maximum Principle offers several advantages that make it a

powerful tool in dynamic optimization:

Generality: Applicable to systems with constraints on control and state variables,
as well as non-linear dynamics.

Constructiveness: Transforms the optimization problem into a system of
differential equations, facilitating numerical implementation.

Versatility: Used in both time-optimal and energy-optimal control problems.
Insight: Provides deeper understanding of the structure of optimal trajectories

and control laws.

5. Applications

Pontryagin’s Maximum Principle has been successfully applied in various

domains:

Aerospace engineering: For trajectory optimization of rockets and spacecraft.
Economics: In optimal growth and consumption models.

Mechanical systems: In controlling robotic arms or autonomous vehicles.
Biomedicine: For modeling and optimizing drug administration strategies.

In each of these cases, the Maximum Principle helps reduce complex

optimization problems into solvable mathematical models, often enabling analytical

insights or efficient numerical solutions.

6. Limitations and Challenges

Despite its strengths, Pontryagin’s Maximum Principle also has limitations:
Complexity of solving the resulting two-point boundary-value problem
(TPBVP).

No guarantee of sufficiency: The conditions are necessary but not sufficient;
solutions must be checked for optimality. It is possible to get sufficient conditions
of optimality for the special classes of optimal control problems, in particular, for
linearly convex G-problems [1].

Sensitivity to initial guesses in numerical methods.
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To overcome these challenges, hybrid approaches combining Pontryagin’s
Maximum Principle with numerical optimization or dynamic programming are often

used.

6. Conclusion

Pontryagin’s Maximum Principle remains one of the most influential tools in
dynamic optimization. Its ability to handle a wide class of problems with high efficiency
and mathematical rigor makes it indispensable in both theoretical and applied contexts.
While modern computational methods continue to evolve, the Pontryagin’s Maximum

Principle continues to serve as a foundational method in optimal control theory.
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