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Abstract

We consider the Andrews factorization of a power series into a ¢g-product, and we show

how to obtain the corresponding sequences in terms of one another.
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1 Introduction

In [1] it is commented that many major results in number theory, analysis, and combinatorics
take the form of a series equals a product”. Thus, Andrews [2] considers the factorization of an

ordinary power series with unit constant term into a g-product

o0 0 o0 1
1+ ;Mn)q = E =g (1)

which generates the recurrence relation

nr(n) =Y Ar(n—j), 2)
j=1
where
A; =) day. 3)
d/j

Schneider-Sills-Waldron [1] mention that the following question is natural:

Can explicit formulas be given, to express the sequences a,, and r(n) in terms of one another?  (4)
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In Sec. 2 we show that (4) has an affirmative answer.

2 The answer is Yes for the question (4)

The solution of (2) is given by [3, 4, 5]:
r(n) = l'Bn (01A;, 1Ay, ... (n— 1)IA,), (5)
n!

in terms of complete Bell polynomials [5, 6]. Then, if we know the sequence {a,,}, this relation
(5) allows determine 7 (n).

The inversion of (5) is immediate [7]

(n—1)4, = Z(fl)k’l(l@ — B k(r(1),r(2),....,7(n—k+1)), n>1 (6)
k=1
in terms of partial Bell polynomials [6, 7, 8]. Hence if we know r(n), then (6) gives the quantities

Ap, and finally the sequence {a,,} is determined via the Mobius inversion of (3) [9, 10]:
n
= —) A, 7
e Zd/ s (d) “ 7

Therefore, the question (4) has an affirmative answer.
Remark 1. Important arithmetic functions satisfy recurrence relations with the structure (2) [5, 11].
Remark 2. For the case a, = 1, the relation (3) gives A; = Zd/j d = o(j), that is, the sum of

divisors function [9] participates in (2) and 7(n) is the partition function [2, 12]:

> vl =[] == - (q;) . np(n) = S a(i)p(n — ) ®)
n=0 n=1 )1/ j=1

Remark 3. If now a,, = (—1)""'k then A; = k>, (~1)""'d and r(n) is the number of repre-

sentations of n as the sum of k triangular numbers [11]:

> otem)g" = [ =), ntu(n) = Asti(n — ) ©)
n=0 n=1 j=1

Remark 4. The work [13] has interesting applications of the g-factorization (1) and the corre-

sponding recurrence relation (2). It is clear that the Fine theorem [14, 15, 16] is applicable to (1),
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hence r(n) is determined by the partitions of n, in fact:
a;+m—1
r(n) = ;01 (k1) Ca (ko) -+, Cj(m) = ( ! m >7 (10)

where A = n means all partitions of n, and £; is the multiplicity of j in a given partition. This
relation (10) is an alternative to (5).

Remark 5. The change a,, — Aa,, is connected with the following expressions

m
n=0 m=1 q ) n=0

A
o0 oo 1 (o] ~
(o) =TT s = v o
then it is natural to investigate the relationship between r(n) and 7(n), in fact [17, 18, 19]

F(n) = %Z <;\>t!BM(1!r(1), 2Mr(2), ... (n—t + Dlr(n—t +1))

1
= B (04 1A, (n— DIAA,) (12)

with the recurrence relation:

S (A +1)j = n)r()F(n— ) =0, n>0. (13)

Jj=0

Besides, from (3) the mapping a,, — Aa,, implies the change A,, — AA,, then (5) gives (12).
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