

A NOTE ON PROBABILISTIC DEGENERATE POLY LAH-BELL POLYNOMIALS

SI HYEON LEE

ABSTRACT. In [1], Liu-Ma-Kim-Kim-Hei considered probabilistic degenerate poly Lah-Bell polynomials, we aim to derive new results that are not included in this paper.

1. INTRODUCTION

Stirling numbers have been extensively studied in the field of combinatorics. This paper studies the Lah number, also known as the third kind of string number. The Lah number $L(n, k)$ counts the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets (see [1],[6],[8],[9]). Recently, researchers have been studying the polyexponential function and the degenerate polyexponential function (see [2],[3],[6]). It has been used as a mathematical tool to study various special polynomials. Probabilistic versions of these special polynomials have also been developed recently (see [1,3,4,10,12,14]). In this paper, we aim to investigate properties not covered in [1]. This paper's outline is as follows: we recall the definitions of generating functions, the Stirling numbers of the first kind, the Lah numbers, the Lah-Bell polynomials and the degenerate polyexponential function. We remind of the Poisson random variable, the Bernoulli random variable, the geometric random variable, the gamma random variable and the gamma function. In Section 2, we recall the definition of probabilistic degenerate poly Lah-Bell polynomials. These polynomials are considered by Liu-Ma-Kim-Hei (see [1]). In Theorem 1, we get an expression of $LB_{n,\lambda}^{(k,Y)}$ by using a Poisson random variable. In Theorem 2, we have an expression for $LB_{m,\lambda}^{(k,Y)}$ with Lah numbers. In Theorem 3, from the gamma distribution, we obtain an expression for $LB_{n,\lambda}^{(k,Y)}$. In Theorem 4, we get an identity for $LB_{n,\lambda}^{(k,Y)}(x)$.

The Stirling numbers of the first kind are defined by

$$(1) \quad \frac{1}{k!}(\log(1+t))^k = \sum_{n=0}^{\infty} S_1(n, k) \frac{t^n}{n!}, \text{ (see [1, 9, 13]).}$$

The Lah numbers, also called the third String number, are defined by

$$(2) \quad \frac{1}{k!} \left(\frac{1}{1-t} - 1 \right)^k = \sum_{n=k}^{\infty} L(n, k) \frac{t^n}{n!}, \text{ (see [1, 6, 9]).}$$

The generating function of the number of Lah-Bell polynomials closely related to the number of Lah numbers is as follows:

$$(3) \quad e^{x(\frac{1}{1-t}-1)} = \sum_{n=0}^{\infty} B_n^L(x) \frac{t^n}{n!}, \text{ (see [1, 6, 9]).}$$

2020 Mathematics Subject Classification. 11B73, 11B83.

Key words and phrases. Stirling numbers, degenerate exponential function, Lah-Bell polynomials.

A degenerate polyexponential function is defined by Kim-Kim

$$(4) \quad Ei_{k,\lambda}(x) = \sum_{n=1}^{\infty} \frac{(1)_{n,\lambda}}{(n-1)!n^k} x^n, \quad (k \in \mathbb{Z}, |x| < 1), \quad (\text{see [6, 7, 8]}).$$

Where $(x)_{0,\lambda} = 1, (x)_{n,\lambda} = x(x-\lambda)(x-2\lambda) \cdots (x-(n-1)\lambda)$ is the degenerate falling factorial sequence.

It is well known that a Poisson random variable with parameter $\alpha > 0$ if the probability mass function of X as follows:

$$(5) \quad P(i) = P\{X = i\} = e^{\alpha} \frac{\alpha^i}{i!}, \quad (i = 0, 1, 2, \dots), \quad (\text{see [3, 5, 15]}).$$

A Bernoulli random variable is one of the simplest types of random variables. It represents an experiment or process that has exactly two possible outcomes: success and failure.

The probability distribution of a Bernoulli random variable X is given by

$$(6) \quad P\{X = 1\} = p, P\{X = 0\} = 1 - p, \quad (\text{see [3, 12, 15]}).$$

Let X be the number of trials required until the first success, then X is called a Geometric random variable with parameter p . Its probability mass function is defined by

$$(7) \quad p(n) = P\{X = n\} = (1-p)^{n-1} p, \quad (n = 1, 2, 3, \dots), \quad (\text{see [14]}).$$

A continuous random variable Y whose density function is given by

$$(8) \quad f(y) = \begin{cases} \beta e^{-\beta y} \frac{(\beta y)^{\alpha-1}}{\Gamma(\alpha)}, & \text{if } y > 0, \\ 0, & \text{if } y \leq 0, \end{cases} \quad (\text{see [3, 4, 5, 15]}),$$

for some $\alpha, \beta > 0$ is said to be the gamma random variable with parameters α, β , which is denoted by $Y \sim \Gamma(\alpha, \beta)$.

The gamma function is defined by

$$(9) \quad \Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} dt, \quad (\text{see [11]}).$$

Where $x \in \mathbb{C}, \text{Re}(x) > 0$.

2. PROBABILISTIC DEGENERATE POLY LAH-BELL POLYNOMIALS

In [1], Liu-Ma-Kim-Kim-Hei considered probabilistic degenerate poly Lah Bell polynomials which are given by

$$(10) \quad Ei_{k,\lambda} \left(x \left(E \left[\left(\frac{1}{1-t} \right)^Y \right] - 1 \right) \right) = \sum_{n=1}^{\infty} LB_{n,\lambda}^{(k,Y)}(x) \frac{t^n}{n!}, \quad (\text{see [1]}).$$

Let Y be a Poisson random variable, then we note that

$$(11) \quad E \left[\left(\frac{1}{1-t} \right)^Y \right] = e^{-\alpha(1-\frac{1}{1-t})}.$$

From (10) and (12), we have

$$\begin{aligned}
(12) \quad & \sum_{n=1}^{\infty} LB_{n,\lambda}^{(k,Y)}(x) \frac{t^n}{n!} = Ei_{k,\lambda} \left(x \left(E \left[\left(\frac{1}{1-t} \right)^Y \right] - 1 \right) \right) \\
& = \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(e^{-\alpha(1-\frac{1}{1-t})} - 1 \right)^m \\
& = \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\sum_{l=0}^{\infty} B_l^L(\alpha) \frac{t^l}{l!} \right)^m \\
& = \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\sum_{l_1=0}^{\infty} B_{l_1}^L(\alpha) \frac{t^{l_1}}{l_1!} \right) \cdots \left(\sum_{l_m=0}^{\infty} B_{l_m}^L(\alpha) \frac{t^{l_m}}{l_m!} \right) \\
& = \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \sum_{n=m}^{\infty} \sum_{l_1+l_2+\cdots+l_m=n} \binom{n}{l_1, l_2, \dots, l_m} B_{l_1}^L(\alpha) B_{l_2}^L(\alpha) \cdots B_{l_m}^L(x) \frac{t^n}{n!} \\
& = \sum_{n=1}^{\infty} \sum_{m=1}^n \sum_{l_1+l_2+\cdots+l_m=n} \binom{n}{l_1, l_2, \dots, l_m} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} B_{l_1}^L(\alpha) B_{l_2}^L(\alpha) \cdots B_{l_m}^L(\alpha) \frac{t^n}{n!}.
\end{aligned}$$

By comparing the coefficient on both sides of (12), we have the following theorem.

Theorem 1. *Let Y be a Poisson random variable. For $n \geq 1$, we have*

$$LB_{n,\lambda}^{(k,Y)}(x) = \sum_{m=1}^n \sum_{l_1+l_2+\cdots+l_m=n} \binom{n}{l_1, l_2, \dots, l_m} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} B_{l_1}^L(\alpha) B_{l_2}^L(\alpha) \cdots B_{l_m}^L(\alpha).$$

Let Y be a Bernoulli random variable, then we note that

$$(13) \quad E \left[\left(\frac{1}{1-t} \right)^Y \right] = (1-p) + \frac{p}{1-t}.$$

From (10) and (13), we have

$$\begin{aligned}
(14) \quad & \sum_{m=1}^{\infty} LB_{m,\lambda}^{(k,Y)}(x) \frac{t^m}{m!} = Ei_{k,\lambda} \left(x \left(E \left[\left(\frac{1}{1-t} \right)^Y \right] - 1 \right) \right) \\
& = \sum_{n=1}^{\infty} \frac{(1)_{n,\lambda} x^n}{(n-1)! n^k} \left((1-p) + \frac{p}{1-t} - 1 \right)^n \\
& = \sum_{n=1}^{\infty} \frac{(1)_{n,\lambda} x^n}{(n-1)! n^k} \left(p \left(\frac{1}{1-t} - 1 \right) \right)^n \\
& = \sum_{n=1}^{\infty} \frac{(1)_{n,\lambda} n! (px)^n}{(n-1)! n^k} \sum_{m=n}^{\infty} L(n, m) \frac{t^m}{m!} \\
& = \sum_{m=1}^{\infty} \sum_{n=1}^m \frac{(1)_{n,\lambda} (px)^n}{n^{k-1}} L(n, m) \frac{t^m}{m!}.
\end{aligned}$$

By comparing the coefficients on both sides of (14), we have the following theorem.

Theorem 2. Let Y be a Bernoulli random variable. For $m \geq 1$, we have

$$LB_{m,\lambda}^{(k,Y)}(x) = \sum_{n=1}^m \frac{(1)_{n,\lambda}(px)^n}{n^{k-1}} L(n,m).$$

By expansion, we note that

$$\begin{aligned} (15) \quad E\left[\left(\frac{1}{1-t}\right)^Y\right] &= E[(1-t)^{-Y}] = E[e^{-Y \log(1-t)}] \\ &= \sum_{n=0}^{\infty} \frac{(-\log(1-t))^n}{n!} E[Y^n]. \end{aligned}$$

When $Y \sim \Gamma(\alpha, \beta)$, we consider n -th moments of the gamma distribution. Then we note that

$$(16) \quad E[Y^n] = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)\beta^n}.$$

From (15) and (16), we have

$$\begin{aligned} (17) \quad \sum_{n=1}^{\infty} LB_{n,\lambda}^{(k,Y)}(x) \frac{t^n}{n!} &= Ei_{k,\lambda} \left(x \left(E\left[\left(\frac{1}{1-t}\right)^Y\right] - 1 \right) \right) \\ &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\sum_{l=1}^{\infty} \frac{\Gamma(\alpha+l)}{\Gamma(\alpha)l! \beta^n} (-\log(1-t))^l \right)^m \\ &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\sum_{l=1}^{\infty} \frac{\Gamma(\alpha+l)(-1)^l}{\Gamma(\alpha)\beta^n} \sum_{n=l}^{\infty} (-1)^n S_1(n,l) \frac{t^n}{n!} \right)^m \\ &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \sum_{n=m}^{\infty} \sum_{l=1}^n \sum_{i_1+i_2+\dots+i_m=n} \binom{n}{i_1, i_2, \dots, i_m} \left(\frac{\Gamma(\alpha+l)}{\Gamma(\alpha)\beta^l} \right)^m \\ &\quad \times (-1)^{l+n} S_1(i_1, l) S_1(i_2, l) \dots S_1(i_m, l) \frac{t^n}{n!} \\ &= \sum_{n=1}^{\infty} \sum_{m=1}^n \sum_{l=1}^n \sum_{i_1+i_2+\dots+i_m=n} \frac{(-1)^{l+n} (1)_{m,\lambda}}{(m-1)! m^k} \left(\frac{\Gamma(\alpha+l)x}{\Gamma(\alpha)\beta^l} \right)^m \\ &\quad \times S_1(i_1, l) S_1(i_2, l) \dots S_1(i_m, l) \frac{t^n}{n!}. \end{aligned}$$

Thus, by comparing the coefficients on both sides of (17), we have the following theorem.

Theorem 3. Let $Y \sim \Gamma(\alpha, \beta)$. For $n \geq 1$, we have

$$LB_{n,\lambda}^{(k,Y)}(x) = \sum_{m=1}^n \sum_{l=1}^n \sum_{i_1+i_2+\dots+i_m=n} \frac{(-1)^{l+n} (1)_{m,\lambda}}{(m-1)! m^k} \left(\frac{\Gamma(\alpha+l)x}{\Gamma(\alpha)\beta^l} \right)^m S_1(i_1, l) S_1(i_2, l) \dots S_1(i_m, l).$$

Let Y be a Geometric random variable, then we note that

$$\begin{aligned}
 (18) \quad E \left[\left(\frac{1}{1-t} \right)^Y \right] &= \sum_{k=1}^{\infty} \left(\frac{1}{1-t} \right)^k p(1-p)^{k-1} \\
 &= p \sum_{l=1}^{\infty} \frac{(1-p)^{l-1}}{(1-t)^l} \\
 &= \frac{p}{1-t} \sum_{l=0}^{\infty} \left(\frac{1-p}{1-t} \right)^l \\
 &= \frac{1}{1 - \frac{t}{p}},
 \end{aligned}$$

where $|t/p| < 1$.

From (10) and (18), we have

$$\begin{aligned}
 (19) \quad \sum_{n=1}^{\infty} LB_{n,\lambda}^{(k,Y)}(x) \frac{t^n}{n!} &= E i_{k,\lambda} \left(x \left(E \left[\left(\frac{1}{1-t} \right)^Y \right] - 1 \right) \right) \\
 &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\frac{1}{1 - \frac{t}{p}} - 1 \right)^m \\
 &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \left(\sum_{l=1}^{\infty} \frac{t^l}{p^l} \right)^m \\
 &= \sum_{m=1}^{\infty} \frac{(1)_{m,\lambda} x^m}{(m-1)! m^k} \sum_{n=m}^{\infty} \sum_{l_1+l_2+\dots+l_m=n} \frac{n!}{p^n} \frac{t^n}{n!} \\
 &= \sum_{n=1}^{\infty} \sum_{m=1}^n \sum_{l_1+l_2+\dots+l_m=n} \frac{n! (1)_{m,\lambda} x^m}{p^n (m-1)! m^k} \frac{t^n}{n!}.
 \end{aligned}$$

Thus, we have the following theorem.

Theorem 4. *Let Y be a Geometric random variable. For $n \geq 1$, we have*

$$LB_{n,\lambda}^{(k,Y)}(x) = \sum_{m=1}^n \sum_{l_1+l_2+\dots+l_m=n} \frac{n! (1)_{m,\lambda} x^m}{p^n (m-1)! m^k}.$$

3. CONCLUSION

Degenerate polyexponential functions have been studied as a tool for observing various polynomials. In this paper, we observed some properties or relations with degenerate poly-Lah Bell polynomials and the definitions of probability theory. Multi polyexponential function, which is used as another mathematical tool, is also widely used as a mathematical tool, but it seems that using the multi version with probabilistic poly Lah Bell polynomials can produce new results.

REFERENCES

[1] Liu, X., Ma, Y., Kim, T., Kim, D. S. Hei, Y. (2025). Probabilistic multi-Stirling numbers of the second kind associated with random variables. *Applied Mathematics in Science and Engineering*, 33(1), 2561683.

- [2] Luo, L., Ma, Y., Kim, T., Li, H. (2023). Some identities on degenerate poly-Euler polynomials arising from degenerate polylogarithm functions. *Applied Mathematics in Science and Engineering*, 31(1), 2257369.
- [3] Liu, W., Ma, Y., Kim, T., Kim, D. S. (2024). Probabilistic poly-Bernoulli numbers. *Mathematical and Computer Modelling of Dynamical Systems*, 30(1), 840-856.
- [4] Kim, T., Kim, D. S. (2024). Probabilistic Bernoulli and Euler polynomials. *Russian Journal of Mathematical Physics*, 31(1), 94-105.
- [5] Kim, T., Kim, D. S. (2023). Probabilistic degenerate Bell polynomials associated with random variables. *Russian Journal of Mathematical Physics*, 30(4), 528-542.
- [6] Kim, T., Kim, H. K. (2022). Degenerate Poly-Lah-Bell Polynomials and Numbers. *Journal of Mathematics*, 2022(1), 2917943.
- [7] Kim, T., San Kim, D. (2020). Degenerate polyexponential functions and degenerate Bell polynomials. *Journal of Mathematical Analysis and Applications*, 487(2), 124017.
- [8] Kim, T., Kim, D. S., Kwon, J., Lee, H. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, *Adv. Difference Equ.* 2020 (2020), Paper No. 168, 12 pp.
- [9] Kim, D. S., Kim, H. K., Kim, T., Lee, H., Park, S. (2021). Multi-Lah numbers and multi-Stirling numbers of the first kind. *Advances in Difference Equations*, 2021(1), 411.
- [10] Kim, T., Kim, D. S. (2025). Probabilistic degenerate Dowling polynomials associated with random variables. *Mathematical Methods in the Applied Sciences*, 48(4), 5024-5038.
- [11] Kim, T., Kim, D. S. (2017). Degenerate Laplace transform and degenerate gamma function. *Russian Journal of Mathematical Physics*, 24(2), 241-248.
- [12] Xu, R., Kim, T., Kim, D. S., Ma, Y. (2024). Probabilistic degenerate Fubini polynomials associated with random variables. *Journal of Nonlinear Mathematical Physics*, 31(1), 47.
- [13] Ma, Y., Kim, D. S., Lee, H., Park, S., Kim, T. (2022). A study on multi-stirling numbers of the first kind. *Fractals*, 30(10), 2240258.
- [14] Wang, J., Ma, Y., Kim, T., Kim, D. S. (2025). Probabilistic degenerate Bernstein polynomials. *Applied Mathematics in Science and Engineering*, 33(1), 2448191.
- [15] S. M. Ross, *Introduction to Probability Models*, 13 Eds., London: Academic Press, 2024.

Submission date: 2025.09.27

KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
Email address: ugug11@naver.com