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1 Introduction

Here we consider the functions:

¥j(q) = (1—q)*9 = 3" Cj(n)q", (1)

n=0
for any sequence {s(n)}, and we accept that:
vt ; vad NS S n
(@) =TT (@) =TI (1-¢)" =3 Rtn)g", R(O)=1; (2)
j=1 j=1 n=0
on the other hand, Jameson-Schneider [1,2] proved the following result:

qd%lnn -y (st) d) e (3)

n=1 \dn
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Besides, we know the Fine’s theorem [3-5]:
9]
n= Z <Z Cy (k1) Co(ka) - - Cn(kn)> q, (4)
n=0 \\Fn

such that A - n means all partitions of n, and k, is the multiplicity of r in a given partition;
therefore, (2) and (4) imply the connection:

R(n) =Y C1(k1)Ca(ks) - Cplkn). (5)
An
In Sec. 2 we apply the expressions (1), ..., (5) to several sequences {s(n)}, in particular,

the case s(j) = % shows that the partitions of an integer can give the number of divisors of it.

2 Divisor function and integer partitions

From (2) and (3) is immediate the following recurrence relation:

n

nR(n) =Y h(j)R(n—j), h(j)=->_s(d)d, h(0)=0, (6)

J=1 d|j

whose solution is given by [6]:
R(n) = %Bn (0'h(1), 11R(2), 2A(3), ..., (n — 1)!h(n)), (7)

in terms of the complete Bell polynomials [6, 7], with the corresponding inversion [8] for
n > 1:
n

(n =11 s(d)d =D (=1)F(k — 1)!Byi (ILR(1),2!R(2),..., (n —k+ 1)IR(n — k + 1)), (8)
din k=1

with the presence of the partial Bell polynomials [8,9]; besides, the coefficients in the ex-
pansion (1) can be calculated with the relation:

n n—1
(—nl') H (s(4)—t), n>1, C;0)=1. (9)

t=0

Cj(n) =
Now we shall apply our expressions to several sequences {s(n)}:

a) s(m)=L Z s(d)d = Z 1 = d(n) = number of divisors of n,
d|n dln
with (5) and (9) obtain the values:

1 1 1 1 1 1
Gi(1) = =, cj<2>=27<571), cj<3>=767(571) (372),..., (10)
R()=—1, R(2)=—2, RE) =2, RMA)=—o (11)
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then (8) generates the property:
n

(n—1)d(n Z (k—1)! Bpx (11R(1),2'R(2),...,(n —k+ DIR(n —k+1)), (12)

that is, the number of divisors of an integer in terms of its partitions. This expression (12)
is an alternative to the following relation deduced in [10]:

d(n) = Z An—r Z Sri, (13)
r=1 j=1

where S,, i, is the number of £’s in all partitions of n, and [11]:

0, J#5@m+1),
a; = m=0,%+1,£2,... (14)
(=™, j=%30Bm+1),
that is:
1, j=0,5,7,22,26,51,57,92,100, 145,155, . ..
a; =< -1, j=1,2,12,15,35,40,70,77,117,126,176, ... (15)
0 otherwise.
b) s(m)=1 . Z s(d)d = o(n) = sum of divisors function,
d|n
Ci(1)=-1, Cjt)=0, t=>2, (16)
and from (2):
O .
ZR(HQ = H 1-¢") = (0 =Y aj¢ . R(n)=an, (17)
n=1 7=0
then (5), (16) and (17) imply the identity:
an =Y Ci(k1)Ca(ks) - - Cn(kn), (18)
AFn

over all partitions without repeated parts. Besides, (6) gives the following recurrence relation
obtained by Robbins [12] and Osler-Hassen-Chandrupatla [13]:

n

nan =~ 3" 0(f)an, (19)

and from (7) and (8):
an, = iBn (=0lo(1), —1lo(2), —2!6(3),...,—(n — )lo(n)), (20)

(n—l)!o(n):Z( DF(k — 1! Byg (ag, 2lag, ..., (n —k + 1)lay_g41) - (21)
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c) s(m)= % where x4 is the nontrivial Dirichlet character (mod 4) [14,15]:
(—l)nT_l, n is odd,
xa(n) = , (22)
0, n is even,
and we have the Jacobi’s expression [16-18]:
1
> xa(d) = gra(n), (23)
d|
involving the number of representations of n as the sum of two squares [14,19,20]; therefore:
. 1 ) ) 1
G ==X gy = MU (WD ) R =1 R)=0. RG)= R =5
(24)
such that:

(n—1)lra(n) = 42%(—1)% — 1) By (R(1),21R(2), ..., (n — k+ 1)IR(n — k +1)). (25)
k=1

d) s(m)= % participating the Mobius function [16-18,21] .. Zs(d)d = eo(n) [22],

with the Bellman’s identity [12,23-26]:

e N\ B9 B S ) —1)J
[[(-¢)" == ke - RG) =L, (26)
j=1 n=0 J:
and from (8):
n 1 —
S DRk = DB (<L -1 () = (27)
k=1 07 n =
e) s(m)= % involving the Euler’s totient function [16-18,22,27] . Zs(d)d =n [22],
dln
with the property [12,25,28]:
> N T . 1 (n) (-1)
[I(1-¢) 7 =e i => Rk . R(n)=z<>7 (28)
j=1 ( ) =0 ni\t)(t-1)
thus (8) implies the identity:
nl = Z(—l)’“(k —1)!B,; (11R(1),2!'R(2),...,(n —k+ 1)!R(n — k+ 1)), (29)
k=1

such that R(1) = —1, R(2) = —3, R(3) = —%, R(4) = 51, R(5) = 35, ... It is possible to

write R(n) in terms of Kummer hypergeometric function or an associated Laguerre polynomial:

n—1

R(n) = —1F1(1-mn;2;1) = —%Ll (1), nz=1 (30)
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