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THE FIRST COHOMOLOGY GROUP OF UNITS OF SOME
REAL BIQUADRATIC NUMBER FIELDS

SAID EL MADRARI

ABSTRACT. Let K = Q(vdy,Vds) with di > 1 and d2 > 1 be two
coprime positive squarefree integers. Denote by Ex the unit group of
K and by Gk the Galois groups of K/Q. The purpose of this paper
is to investigate H'(Gk, Ex), the first cohomology group of Gx with
coefficients in Ex, when the prime 2 is not totally ramified in K.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 11R04, 11R16, 11R27,
13F20.
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1. INTRODUCTION AND NOTATIONS

Let K = Q(\/El, \/32) be a real biquadratic number field such that d; > 1
and dy > 1 and d3 = dids are square-free integers. Let ky = Q(v/dy),
ke = Q(v/dz) and k3 = Q(v/d3) be the three quadratic subfields of K. Let
€; = x; + y;1/d; be the fundamental unit of k;, where x; and v; are rational
numbers, for i = 1,2,3. Put N(m;) = Normy, o(m;) where m; € k;, for
i=1,2,3. Let H := H(Gk, Ex) be the first cohomology group of G, the
Galois group of K/Q, with coefficients in Ef, the unit group of K. Define
a; = N(e+1) =2(x; + 1) if N¢; =1 and a; = 1 otherwise, for ¢ = 1,2, 3.
Let H be the subgroup of Q*/Q*2 generated by [a1], [ag], [as], [d1], [da]
and [d3], where [a;] and [d;] denote the classes of a; and d; respectively in
Q*/Q*2, fori=1,2,3.

In 1980, Setzer [9] gave the general form of the first cohomology group of
units of the real biquadratic number fields (see Theorem 2.1 below). In 1982,
Zantema gave the first cohomology group of units of both the cyclic number
fields (see [11, p. 10]) and the imaginary biquadratic number fields (see [11,
p. 10, Lemma 4.3]). The determination of first cohomology group of units
may have several applications in Class Field Theory and Pélya Theory (see
[11] and [5]). In this work, we use Setzer’s result (see Theorem 2.1) to give
explicitly the first cohomology group of units of K = Q(v/dy, v/dz) such that
dy > 1 and ds > 1 are square-free integers with (di,ds) = 1 and the prime
2 is not totally ramified in K/Q.

2. PRELIMINARY RESULTS

Let e be the ramification index of the prime number 2 in K = Q(\/&l, \/&2)
over Q. The prime number 2 is the only prime that can be totally ramified
in K/Q. When the prime 2 is totally ramified in K/Q, i.e., e =4 = [K : Q),
we have (dy,d2) = (3,2) or (2,3) (mod 4). Therefore, either Ne; # Neg =
Neg =1, Neg # Neg = Neg = 1 or Ney = Neg = Neg = 1. When eq # 4,
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i.e., the prime 2 is not totally ramified in K/Q, we have either es = 1 or
€y = 2.

Let K = Q(Vdy1,Vds) be a real biquadratic number field and H :=
H'(Gg, Ex). Recall that H is the group generated by [d1], [dz], [d3], [a1], [a ]
and [a3]. The following theorem was given by Setzer in [9, Theorem 4], and
Zantema mentioned it later in [11, pp. 14 - 15].

Theorem 2.1. [9, Theorem 4] We have H ~ H, except for the next two
cases in which H is canonically isomorphic to a subgroup of index 2 in H:
(1) the prime 2 is totally ramified in K/Q, and there exists integral
Zi € k‘i, xS {1,2,3} such that Nl(Zl) = NQ(ZQ) = N3(23) =42,
(2) all the quadratic subfields k; contain units of norm —1 and Ex =
Ey, By, Ey,.

Proposition 2.2. ([6] or [1, p. 385]) Let K = Q(v/dy,V/ds), such that dy
and do are two square-free integers. Then, we have the following possibilities
for a system of fundamental units of K :

(1) €, €5, €p-

(2) Ve, €j,€ex with Ne; = 1.

(3) V€, /€, ex such that Ne; = Nej = 1.

(4) \/€i€j, €, € such that Ne; = Nej = 1.

(5) \/€i€j, /€K, €j where Ne; = Nej = Neg = 1.

(6) \/€i€j, \/€j€k, \/€k€i where Ne; = Nej = Neg = 1.

(7) \/€i€j€k,€j, €k where Ne; = Nej = Neg = 1.

(8) f€i€jéx,€j, e with Ne; = Nej = Nep = —1.

where {€;, €5, e} = {€3,€1, €2}.

Lemma 2.3. [3, Lemma 2] Let d = 1 (mod 4) be a positive square-free
integer, and let € = x+y\/d be the fundamental unit of k = Q(v/d). Assume
N(e) =1, then:

(1) x+1 and x — 1 are not squares in N, i.e., 2¢ is not a square in

k= Q(Va).
(2) for all prime p dividing d, p(x + 1) and p(x — 1) are not squares in
N.

Remark 2.4. Let d > 1 be a square-free integer, and let € = x + y\/d be
the fundamental unit of k = Q(v/d) such that Ne = 1. When we say that
(x+1) is a square in N, this means that (x+ 1) or (x — 1) is a square in N.

Lemma 2.5. [1, Lemma 5] Let d > 1 be a square-free integer, and let
e = x + y\Vd be the fundamental unit of k = Q(\/d), where = and y are
integers or semi-integers. If N(e) = 1, then 2(z + 1), 2(xz — 1), 2d(z + 1),
and 2d(x — 1) are not squares in Q.

By means of the above lemma, we have :

Lemma 2.6. Let k = Q(\/;l), where d is a positive square-free integer and
€ = v +yVd is the fundamental unit of k, and x and y are integers or semi-
integers. If N(e) = 1, then there exists a unique pair of positive integers
(A, X)) with AN = d such that either:

(1) 2A(x £ 1) is a square in N where X\ # (1 and d), or
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(2) Az £1) is a square in N where A # 2.

Proof. As N(¢) = 1, then 22 — 1 = (z £ 1)(z ¥ 1) = y*d. Notice that
ged(z 4+ 1,z — 1) is dividing 2, so we distinguish the following two cases:
Case 1: Assume that ged(z+1,2—1) = 2. By the unique factorization in Z,
there exist two unique positive divisors A and X of d such that AN = d and
there exist two numbers z1, zo € Z such that 22120 =y and (x £ 1) = 2)\2%.
This means that 2A\(x £ 1) is a square in N. By Lemma 2.5, we get that
A#1 and d.

Case 2: Assume that ged(x + 1,z — 1) = 1. By the unique factorization in
7Z, there exist two unique positive divisors A and X of d such that AN = d
and there exist two numbers z1, zo € Z such that z;20 = y and (z+1) = )\z%.
Hence, we get that A(z £ 1) is a square in N. By Lemma 2.5 we get that
A#2.

The preceding proof addresses the case where x and y are integers. We now
consider the case where x and y are semi-integers.

We mention that the only case where we can have x and y are semi-integers
is when k = Q(v/d) and d = 1 (mod 4), since Oy, the ring of integers of k
is Z[HT‘/E]. In this case, we have z = % and y = & with a and b having the
same parity, which means that either a and b are both odd or even numbers
at the same time. We refer the reader to [8, p. 43, Theorem 1]. Note that
when both a and b are even numbers, x and y become integers, which is not
the case we are considering.

We have € = z+yvd with Ne = 1,50 2% —1 = (z£1)(zF1) = y?d, therefore
(22)? — 4 = (20 £ 2)(22 F 2) = (2y)?d. Notice that ged(2z + 2,2z — 2) = 1,
taking into account that 2z is an odd integer. By the unique factorization in
Z, there exist two unique positive divisors A and )\’ of d such that A\ = d and
there exist two numbers z1, z2 € Z such that 2129 = 2y and (27 £ 2) = \2%.
Therefore, A(2z +2) = 2A(z + 1) is a square with A # 1 and d. Hence, the
lemma is proved. ([

We refer the reader to [4] to see similar cases of the lemma above.

Remark 2.7. Keep the hypothesis of the above lemma.

(1) Notice that if d is an odd prime number, then d(x £ 1) or (x £ 1) is
a square in N.

(2) Assume that d = 1 (mod 4) is a positive square-free integer. Note
that if d = 1 (mod 8), then x and y are integers, whereas if d = 5
(mod 8), then x and y can be integers as well as semi-integers (see
[2, Lemma 4.2]).

Example 2.8. Let k = Q(v/105) such that d = 3-5-7 = 105, and let
€ = 41 4 4V/105 be the fundamental unit of k with N(e) = 1. Note that here
we have x = 41 and y = 4 are integers, and thus we find that ged(x + 1,z —
1) = ged(42,40) = 2. Therefore, we are in case 1 of the above proof.

We have 2(x+1) = 2-40 = 2*.5. Hence, 2\(z+1) = 2-5(z+1) = (22-5)2
is a square, where A\ = 5 1is distinct from 1, and d = 105, and N = 3 -7
with AN = d = 105. It is worth mentioning that the pair (A\,X') with A =5
and N = 3 -7 is the unique pair that satisfies 2X\(x + 1) being a square and
AN =5-3-7=105.
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Example 2.9. Let k = Q(v/805) such that d = 5-7-23 = 805, and let
e = T 4 3L/805 be the fundamental unit of k with N(e) = 1. Here we
have v = 2T and y = 3L, So, (4H1)2—1 = (M 1) (4T £1) = (3})2.805,
therefore 1447% — 4 = (1447 + 2)(1447 7 2) = 512 - 805. Thus, we have
ged(2z + 2,2z — 2) = ged(1449, 1445) = 1 where 2z + 2 = 1449 = 32 . 7. 23
and 2x —2 = 1445 = 5- 172,

We have 2(z + 1) = 2(3 + 1) = 2(H4H2) = 1449 = 32 . 7- 23 and hence
we get that 2\(x + 1) = 32 - 7% - 232 is a square with A = 7 - 23.

Remark 2.10. Let k = Q(\/E), where d is a positive square-free integer.
Let € = 2 +yV/d be the fundamental unit of k. Throughout this work, x and
y are either integers or semi-integers. Additionally, X and N are positive
integers dividing d with A\ = d.

The following result is based on the lemma above and we establishe the
equivalence of two statements concerning squares in the rational numbers Q
and elements within the quadratic field Q(v/d).

Lemma 2.11. Let k = Q(V/d), where d is a square-free integer and € =
x + yVd is the fundamental unit of k. Let N(e) = 1 and let (\,\') be the
unique pair, AN = d satisfying the two items in the lemma above. Then, we
have the two following equivalences:

(1) 2X\(z £ 1) is a square in N if and only if /e is in Q(\/d), where

A # (1 and d).
(2) Mz 1) is a square in N if and only if V/2Xe is in Q(v/d), where
A #£ 2.

Proof. (1) Let us start by proving the direct implication. Assume that
— 9).2
2A(z+1) is asquare in N such that A # 1 and d. So, { i i } ; gi,zzl% ,
where 22129 = y, ¥ = A\z? + X223 and A\ = d, then /e = 2V +
20V N. Thus, we have Ve = 21\ + 20V AN € Q(\/E)

Conversely, assume that v/Ae € Q(v/d) where A # 1 and d. Then,
Ve = a +bV/d € Q(v/d). By squaring we obtain Ae = a® + b?d +
2abv/d. On the other hand, we have € = z 4+ yv/d, and thus we get
that Ae = Az + \yvd = a2 + b2d + 2abV/d, implying that \z = a? +
b2d = a?+b2A)\ and Ay = 2ab. So, we have x = %Q—sz)\’ = AaZ+\b?
with a1 = % and y = %“b = 2a1b.

Since 22 — 1 = (z £ 1)(z F 1) = y2d = (2a1b)?d, we get that z+ 1 =
2a3) (also x F 1 = 2b%)'), which means 2\(z + 1) is a square in N
with A # 1 and d.

(2) For the second equivalent, let us start by the direct implication.
Suppose that A(x 1) is a square in N such that A # 2. So, we have
{ rE1=\3

rFl=N23"
Then, \/2—6 = Z1\/X+ ZQW. So, V2he = 2N+ Zg\/W S Q(\/E)

Conversely, assume that v/2\e € Q(\/&) such that A # 2, then
V2 e = d/ +b'\V/d € Q(\/d). So, 2Xe = a2 + b?d + 2a'b'/d. We have

where 2120 = y, 2z = A2} + Nz3 and AN = d.
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€ = & +yV/d. Therefore, 2\e = 2 \x + 2 \yVd = a’? + b2d + 24'b'V/d.
Thence, 2 z = a2 + b%d = /> + ¥?A)N and \y = a’l’. Thus, we get
2r = %{2 + 2N = Aa? + Vb2 with o] = %/ and y = % =ajb. As
22— 1= (z+1)(zF1) =y%d = (a}t/)%d, we have z £ 1 = a2\ (as
well zF1 = b2)), which means A(x41) is a square in N with \ # 2.

O

In particular, by setting A = 1 in the second assertion of Lemma 2.11, we
get that: (z 4 1) is a square in N if and only if v/2¢ is in Q(v/d).

In Propositions 2.12 and 2.13, we give the conditions in which the units
of K are squares. We provide another way of expressing what was given by
Louboutin in [7, Corollary 3.2].

Proposition 2.12. Let K = @(\/31,\/32), where dy > 1 and do > 1 are
two square-free integers and (dy,ds) = 1 and d3 = dids. Let €; = z; +y;i/d;
be the fundamental unit of k; = Q(v/d;) where Ne; = 1 fori=1,2,3. Then:
(1) e3 € K if and only if 2dy(x3 £ 1) is a square in N.
(2) Veiez2 € K if and only if (x1 £1) and (x2 £ 1) are squares in N.
(3) /€€ € K for j = 1,2 if and only if one of the following cases holds:
(a) Aj(xj £ 1) and Az(x3 £ 1) are squares in N, where A\; # 2 and
A3 # 2 and either [A\jA3] = [d;] or [d3], or A\j = As.
(b) 2Aj(xzj+1) and 2A3(xz3+1) are squares in N, where \; # (1, d;)
and A3 # (1,d3) and either [A\jAs] = [d;] or [d3], or A\j = As3.

Proof. We start by the first equivalent.

(1) We apply Lemma 2.11 and we get that: 2d;(x3 £ 1) is a square in N
if and only if v/die3 € k3 = Q(v/d1d2), which means that \/e3 € K.
(2) For the second equivalent:
(z1 £ 1) and (zg £ 1) are squares in N if and only if \/2¢; € k1 =
Q(Vdy) and v/2e2 € ky = Q(v/d2) (see Lemma 2.11). As a result
VIa3e = 2/a8 € K = Q(/d, V).
(3) For the third equivalent:
Let us start conversely. We have the following items.
(a) For the first item we have \;(z; £ 1) and A3(xz3 £ 1) are squares
in N, where A\; # 2 and A3 # 2 and either [AjA3] = [d;] or
[d3], or )\j = )3 for j € {1,2}7 then \/2>\]‘6j S kj = Q(\/E)
and /2)\ze3 € k3 = Q(v/d3) for j = 1,2. So, we obtain
V2Aj€iv2X3€e3 = 24/ AjAsejes € K = Q(v/dy,v/dz) such that
Aj # 2 and A3 # 2 and either [A\jA3] = [d;] or [d3], or A\j = A3
for j =1,2. So, we get that /€5 € K for j = 1,2.
(b) Now, 2)\;(z; = 1) and 2A3(x3 £1) are squares in N, where \; #
(17dj) and A3 # (1,d3) and either [)v)\g] = [d]] or [dg]7 or
Aj = A3, therefore (/Aje; € Q(\/@) and v/Azes € Q(v/d3) for
j =1,2. Then, we get that \/Ajejv/Azes = \/AjAzeje3 € K =
Q(v/d1,V/d2), such that A\; # (1,d;) and A3 # (1,ds) and either
[)\j)\3] = [d]] or [ds], or Aj = Az with j = 1,2. So, VE€3 € K
for j =1,2.
To prove the direct implication, we use the contrapositive. We know
that: P implies (Q or R), equivalent to Not (@ or R) implies Not

375
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P, equivalent to ( Not @ and Not R) implies Not P, equivalent to
Not @ implies Not P and Not R implies Not P.

Let P be /eje3 € K for j = 1,2. Let Q be (a) in the proposition.
Let R be (b) in the proposition.

We have Not @ as follow: \j(x; £ 1) or A3(x3 £ 1) is not a square in
N, where [AjA3] = [d;] or [d3], or Aj = A3 with j =1, 2.

By the above lemma we get that:

\/2)\j6j §é kj or \/2)\363 §§ k3, such that [)\])\3] = [d]] or [dg], or
)\j = A3 with j =1,2.

Therefore, we get that | /€j€3 ¢ K, with j = 1,2. Hence, we proved
that Not @ implies Not P.

Similarly to the above, we prove that Not R implies Not P, therefore
we complete the proof of the proposition.

O

Proposition 2.13. Let K = Q(\/El, \/32) where (d1,d2) =1 and d3 = dyda.
Let ¢; = x;4y;\/d; be the fundamental unit of k; = Q(\/CTZ) where Ne; = 1 for
i=1,2,3. Then, \/e1eae3 € K if and only if one of the following assertions
18 satisfied:
(1) (z; £1) and Me(zp £ 1) and 2A3(x3 £ 1) are squares in N, where
Me # (2,dg) and A3 # (1,d3) and either [ApAs] = [di] or [ds], or
)\k :)\3 withj%k: ].,2.
(2) 2Xj(z; £1) and (£ 1) and A3(xs £1) are squares in N, such that
Aj # (1,d5) and A3 # (2,ds) and either [A\jAs] = [d;] or [d3], or
)\j :)\3 ’withj#k‘:LZ
(3) 2M\1(z1 £1) and 2X2(x2 £ 1) and 2X3(x3 £ 1) are squares in N, where
)\i 55 (l,di> fOTi = 1,273 and either [)\1)\2/\3] = [dg], or )\1)\2 = /\3.

Proof. Let’s start conversely.
(1) When (z; £ 1) and Ag(zy £ 1) and 2A3(z3 + 1) are squares in N,
where A\, # (2, dy) and A3 # (1,ds) and either [A\yA3] = [d] or [d3], or
A = A3 Wlth] 7& k=1,2,s0 \/E € Q(\/E) and v/2A\p€x € Q(\/CTk)
and /Aze3 € Q(v/d3) (see Lemma 2.11), then /2¢; x /2Apex X
VAses = 20/ A\ A3 fejepes € K such that j # k = 1,2. As we have
either [A\gAs] = [dg] or [ds], or A\p = A3 with j # k{1,2}, then
e = e € K.
(2) When 2A;(z;£1) and (2 £1) and Az(zs£1) are squares in N, such
that A; # (1,d;) and A3 # (2,d3) and either [AjAs] = [d;] or [d3], or
Aj = A3 with j # k = 1,2, therefore \/Aje; € Q(\/@) and 1/2¢; €
Q(Vdg) and /2X3e3 € Q(+/d3) so we get that 2/ AjAs\[fEj€res €
K. Since either [)\j)\g] = [d]] or [dg], or )\j = )3, then €j€K€3 =
Veiees € K.
(3) When 2\ (z1 + 1) and 2X2(xz2 £ 1) and 2A3(z3 £+ 1) are squares in
N, where \; # (1,d;) for i = 1,2,3 and either [A;A2A3] = [d3], or
AA2 = A3, then v/ Ne; € Q(v/d;) for i = 1,2, 3. Thence, we obtain
\/)\161\/)\262\/)\363 = \//\1)\2)\3\/@ € K and thus m e K.
Now for proving the direct implication, we use the same process of Propo-
sition 2.12. Let P be /erezes € K. Let Q, R, and S be (1), (2), and (3) in
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the proposition stated above, respectively. It is well known that P implies
(Q or R or S), is equivalent to Not ) implies Not P, and Not R implies Not
P, and Not S implies Not P.
We have Not @ as follow: (z;%1) or A\j(x;£1) or 2A3(x3+1) is not a square
in N, where [\;A3] = [d;] or [ds], or A\; = A3 with j # i = 1,2, therefore we
get that \/2¢; ¢ kj or \/2\ie; ¢ ki or v/Azez ¢ k3, and thus we find that
Veiezes ¢ K. Then, we have Not @ implies Not P. Similarly, we get that
Not R implies Not P, and Not S implies Not P.

O

Example 2.14. Let K = Q(+/23,V/35) such that di = 23, do = 5-7 = 35
and ds = 35 -23 = 805. So, we have €1 = 24 + 523, €3 = 6 + /35 and
€3 = 3(1447 + 51/805).

We have (24 + 1) = 5%, and 5(6 — 1) = 52 (here we have Ay = 5), and then
2-7-23(142) = 32.72.232 are squares (note that here we have A3 = 7-23).
Since 5 - 7-23 = XaA3 = d3, we get that \/e1eze3 € K.

Furthermore, by the Proof of Lemma 2.11, we get that v/2e; = 5+ /23 €
Q(v23) and /2 56z = 5 + /35 € Q(v/35) and then /T 2363 =3 -7-23+
/505 € Q(v/305).

Remark 2.15. Let ¢; = x; +y;\/d; be the fundamental unit of k; = Q(\/d;)
and we let a; = N(e; + 1) = 2(x; + 1) for i = 1,2,3 where N¢; = 1 for
i =1,2,3. Recall that [a;] is the class of a; in Q*/Q*2, and [d;] is the class
of di in Q*/Q** fori=1,2,3.
(1) When (z;%£1) is a square in N, then [a;] = [2] or [2d;] withi=1,2,3.
(2) When Ai(z; £1) such that i # (1,2 and d;) is a square in Q, then
[a;) = [2Xi] or [2X]] with X, = d; fori=1,2,3.
(3) When 2X;i(z; £ 1) is a square in N such that \; # (1 and d;), then
[a;] = [Ni] or [N]] where NN, =d; fori=1,2,3.

We now use Propositions 2.12 and 2.13 in the following proposition.
Define ([c1], [ca], [es], [ca], [c5]) to be the group generated by [c1] [ca], [cs], [c4],
and [cs].

Proposition 2.16. Let K = Q(v/dy,Vdy) where (dy,dy) = 1, and let ¢; =
x; + yiv/d; be the fundamental unit of k; = Q(v/d;) where Ne; = 1 and we
let a; =2(x; + 1) fori=1,2,3.

(1) When (/€3 € K, then [a3] € ([d1], [d2])-

(2) Let \Je1e3 € K, so [a1] and [ag] € ([d1], [d2],[2]).

(3) Assuming that \/ejes € K for j € {1,2}, then [a3] € ([d1], [d2], [a;])-

(4) When (/e1e2e3 € K, we get that [as] € ([d1], [da], [a1], [a2]).

Proof. (1) As e3 = 23 + y31/d3 is the fundamental unit of k3 = Q(1/d3)

and Nes = 1, then (z3 £1)(z3 F 1) = y3ds.
By Proposition 2.12, when /€3 € K so 2d;(x3 £ 1) is a square in N,
i.e.,

r3+1= 2d1t§ or r3—1= 2d1t§

r3—1= 2d2t52 r3+1= 2d2t;2
where 2t3t; = ys and dydy = d3, implies that [as] = [2(z3+1)] = [d1]
or [do] € ([d], [da]).
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(2) According to Proposition 2.12, we get that when /ejez € K then
(x1£1) and (z2£1) are squares in N. Then, [a1] = [2(x1 +1)] = [2]
or [2d;] and [ag] = [2(z2+1)] = [2] or [2d2] (see Remark 2.15). Thus,
[a1] and [ag] € ([du], [da], [2]),

(3) Now for the third assertion. We have when ,/€je3 € K for j € {1,2},
by Proposition 2.12, we get that one of the following items is satisfied:
(a) Aj(xj £1) and Az(x3 = 1) are squares in N, where \; # 2 and

A3 # 2 and either [)\J)\g] = [dj] or [dg], or )\j = A3, then [aj] =
20,] ¢ ([di],[da]) and [ag] = [2Xg] ¢ (] [dz]). Therefore,
either [a3] = [2A3] = [2A](di] = [a;][di], or [as] = [a;] with i €
{1,2,3} and j € {1,2}. Thus, we get that [a3] € ([d1], [d2], [a;])
with j € {1,2}.

(b) 2Aj(xz;£1) and 2A3(x3 £1) are squares in N, where \; # (1, d;)
and A3 # (17d3) and either [)\j)\g] = [dj] or [dg], or )\j = A3,
therefore we get that [a;] = [A;] ¢ ([d1], [d2]) and [a3] = [A3] ¢
([d1], [da]). So, either [a3] = [a;][d;] withi = 1,2, 3, or [a3] = [a;]
with j € {1,2}. Consequently, we obtain [as] € ([d1], [d2], [a;])
with j € {1,2}.

(4) According to Proposition 2.13, we get that when ,/€jezes € K, then
one of the following cases holds.

(a) (z;£1) and Ag(xr £ 1) and 2X3(x3 £ 1) are squares in N, where

A # (2,dg) and A3 # (1,d3) and either [AgAs] = [dg] or [ds], or
A=A with j #k=1,2.
Then, we find that [a;] = [2(z; + 1)] = [2] or [2d;], and [ak] =
2] and [a3] = [A3]. So, we have [a;] € ([di],[d2],[2]) and
we get either [ag] = [aj]lak][d;], or [as] = [aj][ax] with ¢ €
{1,2,3} and j # k € {1,2}. Consequently, we have [a3] €
([da], [d2], [aa], [az])-

(b) 2X\j(x; £ 1) and (zf £ 1) and Az(xs £ 1) are squares in N, such
that \; # (1,d;) and A3 # (2,d3) and either [A\;As3] = [d;] or
[d3], or A\j = A3 with j #k =1,2.

So, we get that [a;] = [2(z; +1)] = [A;] and [ag] = [2] or
[2dk] and [a3] = [2A3]. Thus, we get that [ax] € ([d1],[d2], [2])
and either [ag] = [2A3] = [ax][a;][di], or [as] = [ax][a;] with i €
{1,2,3}and j # k € {1,2}. Asaresult, [as] € ([di1], [d2], [a1], [a2]).

(¢) 2A1(x1 £ 1) and 2Xg(z2 £ 1) and 2X3(z3 £ 1) are squares in N,
where \; # (1,d;) for ¢ = 1,2,3 and either [A;AoA3] = [d3],
or AiA2 = A3. Then, we get that [a;] = [2(x; + 1)] = [\] ¢
([d1], [d2]) for i = 1,2,3. Since we have [AMAaA3] = [d3] or
A1A2 = A3, then we obtain either: [as] = [a1][az2][ds], or [a3] =
[a1][az]. So, [as] € ([di], [d2], [a1], [az])-

(]

3. THE FIRST COHOMOLOGY GROUP OF UNITS OF SOME FIELDS OF
K = Q(Vdy,Vdy) WHERE (dy,ds) =1 AND ey # 4

When we say that the prime 2 is not totally ramified in K = Q(v/dy, V/ds)
over Q, then we have (di,d2) = (1,1),(1,2),(2,1),(1,3),(3,1) or (3,3)
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(mod 4), in other words (d1,d2) # (2,3) and (3,2) (mod 4). It is well-known
that when we have either Ne; # Nea = Neg =1, Nea # Nep = Neg =1 or
Nejp = Neg = Neg = 1, then we get either e =4 or es # 4. In the theorem
below, we give the first cohomology group of units of K = Q(v/dy, Vdy)
where (d1,d2) =1 and e # 4.

Theorem 3.1. Let K = Q(vdy,Vdy), where di > 1 and dy > 1 are two
square-free integers with (dy,ds) = 1. Then

(1) HY Gk, Ex) ~ (Z/27)2. If
(a) Ney = Neg = Ne3 = —1 and (/ereze3 € K or
(b) Net = Neg = —1, Ne3 =1 and \/e3 € K.
(2) HY Gk, Ex) ~ (Z/2Z)3. When
(a) Ney = Ney = Nes = —1 and \Jerezes € K
(b) Ne1 = Nea =—1, Ne3 =1 and \/e3 ¢ K
(c) Ne;j # Ne, = Nez = 1 and either \Je3 € K or \/ee3 € K,
where ea # 4 and j # k{1,2}
(d) Nej # Nep, = Neg = —1 with j # k{1,2}
(e) Ney = Ne; = Nes = 1 and (Jere; € K and \/eje3 € K and
Veses € K where eg # 4
(3) H'(Gk,Ex) ~ (Z/2Z)*. If
(a) Ney = Nea =1, Neg = —1
(b) Nej # Nep = Neg =1, \Jes & K and \Jepe3 ¢ K, where eg # 4
Jj#k{1,2} or
(¢c) Net = Ne; = Neg = 1 and either \Je3 € K, \Jeiea € K,
Vees € K, (fezes € K or \Jerezez € K where ea # 4.
(4) H\(Gy, Ex) ~ (Z/2Z)5. When
() Noo = Ney = Nes = 1, /& ¢ K, \Jae ¢ K, Jae ¢ K,
Vees & K and \Jfejezez ¢ K where ez # 4.

Proof. Let K = Q(v/dy,Vdy), where (dy,ds) = 1. Recall that H is the
subgroup of Q*/Q*? generated by [d1], [da], [da], [a1], [a2] and [a3] such that
d3 = dide and a; = N(¢;+ 1) = 2(x; + 1) for i = 1,2,3 when N¢; = 1
otherwise a; = 1 for i = 1,2,3. We study whether [d1], [d2], [d3], [a1], [a2]
and [ag] are linearly independent. Since we have (di,dz) = 1, and dids = d3
so [ds] € ([d4], [dz]), then ([d1], [d2]) is the group generated by [d;] and [dg].

(1) When Ne¢; = Neg = Nez = —1, then [a1] = [az] = [a3z] = 1. So,
H = ([di],[do]) ic., H ~ (Z/2Z)2. As Ne; = Neg = Neg = —1,
then we have to distinguish the two following cases:

(a) when ,/ejeze3 € K, by Theorem 2.1, we get that H~H ~

(Z.)27.)2.
(b) otherwise, i.e., \/€1€ze3 ¢ K, by Theorem 2.1, we get that H ~
(Z./27.)3.

(2) If Ne; = Neg = —1 and Neg = 1, then [a1] = [ag] = 1. As Neg =1,
then we have either \/e3 € K, or /e3 ¢ K.

(a) When ,/e3 € K, according to Proposition 2.16, we have [a3] €

([d1],[d2)). Therefore, H = ([d1],[ds]) and thus we get that

H~ H ~ (Z/27)*.
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(b) Otherwise, then [as] & ([d1], [da]), so H = ([d1], [ds], [as]). And
thus, we get that H ~ H ~ (Z/27)3.

(3) When Ne; # Nep = Nez = 1 where j # k € {1,2} and ex # 4,
then [a;] = 1. As Ney = Neg = 1 with k € {1,2}, then we have to
distinguish the three following cases.

(a) If \/e3 € K, by Proposition 2.16, we have [a3] € ([d1], [d2]). On
the other hand, we have [ag] ¢ ([d1], [d2]) (see Remark 2.15 ).
Thence, H = ([dy], [d], [ax]). As a result, we get that H ~ H ~
(7./27.)3.

(b) When /ees € K, such that k € {1,2}, then according to
Proposition 2.16, we have [a3] € ([d1], [d2], [ax]) with k € {1,2}.
So, H = ([d1], [da], [ax]) and thus we have H ~ H ~ (Z/27Z)3.

(c) Otherwise, i.e., \/es ¢ K and \/e1e3 ¢ K and \/éze3 ¢ K, then
las] ¢ ([d1], [da], [ax]) with k € {1,2}. Thus, H = ([d1], [d2], [ax], [as])
such that k& € {1,2}. Consequently, we get that H ~ H ~
(Z.)27)*.

(4) When Ne; # Nep = Nez = —1 such that j # k = 1,2, then
lax] = [as] = 1 and [a;] € ([d1], [d2]) ( note that we can have either
[a;] = [2] or [2d;], or [a;] = [2)\;] such that A; # (1,2 and d;) or
[a;] = [Aj] where \; # (1 and d;) with \j\) = d; for j € {1,2}, see
Remark 2.15 ) and thus H = ([d1], [da], [a,]). So, H ~ H ~ (Z/27).

(5) Suppose Ne; = Neg = 1 and Neg = —1. Then, [az] = 1 and d; or
dy =1 (mod 4) such that all prime divisors of dy,dy and ds are not
congruent to 3 (mod 4). By using Lemma 2.3, we get that [(z1 +1),
(1 — 1),p(z1 + 1), and p(z1 — 1)] are not squares for all prime p
dividing d;y or [(x2 + 1), (x2 — 1),q(z2 + 1), and g(xze — 1)] are not
squares for all prime ¢ dividing de. And thus we have [a1] = [A\1],
with )\1 75 (1,d1) or [CLQ] = [/\2}, with )\2 7& (1,d2) (see Remark 2.15).
Hence, [a;] ¢ ([di1],[d2], [ax]) with j # k € {1,2}, therefore we get
that H = ([dy], [d2], [a1], [as]). Thus, H ~ H ~ (Z/27)*.

(6) If Ney = Neg = Neg = 1 where ey # 4, then we need to distinguish
the following cases.

(a) If \/e3 € K, according to Proposition 2.16, we have [a3] €
([d1], [d2]). We mention that \/ejez ¢ K since {e1, €2, /e3} is
the system of fundamental units of Fx (see Proposition 2.2).
So, [ar] ¢ ([di],[da],[a;]), § # k € {1,2}, therefore H =
([d1], [d2], [a1], [az]). By Theorem 2.1, we have H ~ H ~ (Z/27)*.

(b) When /eje; € K, by using Proposition 2.16, we get [a;] €
([d1], [d2], [2]) with j = 1,2 (taking into account that {,/€r€z, €2, €3}
is the system of fundamental units of Fc). Note that ,/€je5 ¢ K
for j = 1,2 which means that [a3] ¢ ([d1], [d2], [a;]). Therefore,
H = (ld1], [dal, [a;], [as]) where j = 1,2. Thus, we get that
H~ H ~ (Z)27)*.

(c) If \/eje3 € K, j = 1,2. By Proposition 2.16, we find that
las] € ([di],[d2],[a;]) with 7 = 1,2. On the other hand, we
have |/ex€; ¢ K with j # k = 1,2, (note that {e1, e2,/€5€3} is
the system of fundamental units of Ex (see Proposition 2.2)).
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Hence [a;] ¢ ([di],[d2],]as]), 5 # k € {1,2}. Then, H =
([di], [da), [ak], [a;]), 7 # k € {1,2}. Thence, we have H =~
H ~ (2)27)*.

(d) If \/ereze3 € K (here we have {ey, €2, /€1€2€3} is the system of
fundamental units of Ex ), we get that [az] € ([d1], [da], [a1], [a2])-
Thus, H = {[d1], [d2], [a1], [a2]). By Theorem 2.1, we get that
H~ H ~ (Z)27)*.

(e) Otherwise, i.e., \/e3 ¢ K, \Je162 ¢ K, \Jere3 ¢ K, \Jeze3 ¢ K
and /ereze3 ¢ K (here we have {e1, €2, €3} is the system of
fundamental units of Ex ), then we get that H ~ H ~ (Z/2Z)°.

(7) When Ne; = Neg = Neg = 1 and (/€163 € K and /e1e3 € K and

Ve2es € K where ey # 4, (Note that in this case { /€1€2, \/€2€3, \/€1€3}

is the system of fundamental units of Ex), we have to study the three

following cases; (/€€ € K, \/eze3 € K and /e1e3 € K. By Proposi-
tion 2.16, we know that when \/€jez € K, then [ag] € ([d1], [d2], [a;])
with j # k = 1,2 and when /&3 € K so [a3] € ([di],[d2], [a;]),
j=1,2. As aresult, H' (G, Fx) ~ H~ Es.

O

Now we give some examples of the first cohomology group of units of

K= Q(\/El, \/32) where (d1,ds) = 1 and the prime 2 is not totally ramified
in K/Q.
Example 3.2. Let K = Q(v/10,V/77) such that di = 2-5 = 10 and dy =
7-11 =77 and then ds = 2-5-7-11 = 770. We have €; =34 +10 and
€ = %(9+ﬁ), and then e3 = 1114 4+/770 such that Ne; # Neg = Neg =
1. So, a1 =1 and ap = 2(3 + 1) = 11, and then ag = 2(111 +1) = 2° - 7.
Hence, H~ H ~ ([2-5],[7-11],[11],[2 - 7)) ~ (Z/2Z)*.

Example 3.3. Let K = Q(\/78,1/145) where d; = 2-3-13 = 78 and
do = 5-29 = 145, and then d3 = 2-3-5-13-29 = 11310. We have
€1 = 53+ 678 and €3 = 12 + /145, and then e3 = 7019 + 66+/11310 such
that Ne; = Nes = 1 and Ne; = —1. So, a1 = 2(53 + 1) = 22 - 3% and
as = 1, and then a3 = 2(7019 + 1) = 23 .33 .5.13. Therefore, H~H~
([2-3-13],[5-29],[3],[2-3-5-13]) ~ (Z/2Z)*.
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