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ON RINGS AND MODULES SATISFYING THE ASCENDING
CHAIN CONDITION ON DIVISIBILITY

HWANKOO KIM*, SALAH EDDINE MAHDOU, AND OUSSAMA AYMANE ES SAFI

ABSTRACT. This paper investigates rings and modules satisfying the divisibility
condition in ascending chains of ideals and submodules, respectively, denoted by
ACCy. These notions were first introduced by R. Dastanpour and A. Ghorbani
as generalizations of the classical ascending chain condition (ACC).

We establish several new and significant results related to these structures. For
example, we show that an ACC,; domain satisfies the ACC on absorbing ideals.
Furthermore, an ACCy domain is Noetherian if and only if it satisfies the ACC
on principal ideals. This equivalence also holds for ACCjy rings that contain only
finitely many non-zero-divisors and satisfy the ACC' on principal ideals. We also
examine the transfer of the ACC4 condition to amalgamated algebras.

In the context of ACCy modules, we prove that every free submodule is finitely
generated. Additionally, we show that over an ACCy ring, a module M for which
Ann(M) is not contained in any principal ideal is Noetherian if and only if it is
finitely generated.

1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with identity,
and all modules are unital. If A is a ring, we denote by Nil(A) the set (ideal) of all
nilpotent elements of A, and by tq(A) = A4\ z(a) the total ring of quotients of A.

In [6], R. Dastanpour and A. Ghorbani introduced a generalization of the ascend-
ing chain condition (ACC') on (right) ideals. A ring A is said to satisfy the ascending
chain condition on divisibility (ACCj) on right ideals if in every ascending chain of
right ideals of A, each ideal in the chain, except for finitely many, is a left multiple
of the next. That is, for every ascending chain of ideals

LCLCZ3C---,

there exists an integer k£ such that for all ¢ > k, there exists an element a; € A
with I; = a;1;+1. Similarly, in [7], the same authors introduced the notion of ACCy
modules. If all the multiplication factors a; are units, then the ring satisfies the
classical ACC' condition and is Noetherian.

While most results in [6] concern associative (possibly noncommutative) rings,
the purpose of this paper is to investigate these ideas in the context of commutative
rings. We present several new results that highlight the behavior of finitely generated
and principal ideals in ascending chains.
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We begin by recalling that a proper ideal I of a ring R is called n-absorbing if
for any x1,...,2n11 € R with z1--- 2,41 € I, there exist n of the x; whose product
belongs to I. For simplicity, we refer to such ideals as absorbing ideals.

This paper is structured as follows. In Section 2, we study the distribution of
finitely generated and principal ideals in ascending chains. In particular, we inves-
tigate ascending chains of absorbing ideals in ACCy rings. We show that in an
ACCy domain, such chains stabilize. This result is further extended to ACCjy rings
under the additional assumption that at least one ideal in the chain is prime. As
a consequence, we prove that valuation domains satisfying ACCy contain only one
finite chain of absorbing ideals. Therefore, such rings have finite Krull dimension.

We also establish relationships between the classical ACC' and the divisibility-
based ACCy. For instance, we show that an ACCy ring with only finitely many zero-
divisors, which also satisfies the AC'C on principal ideals, is Noetherian. Moreover,
we prove that if A is an ACCy ring and M is an A-module such that Ann(M) is
not contained in any principal ideal, then M is Noetherian if and only if it is finitely
generated.

Additionally, we investigate the transfer of the AC'Cy condition to ring extensions,
with particular attention to amalgamated algebras.

In Section 3, we demonstrate that every free submodule of an ACC,; module is
finitely generated.

2. RINGS SATISFYING THE ASCENDING CHAIN CONDITION ON DIVISIBILITY

In this section, we study the behavior of ideals in rings satisfying the ascending
chain condition on divisibility (ACCy). We examine how finitely generated, princi-
pal, and n-absorbing ideals distribute in such chains and establish conditions under
which these chains become stationary. Connections to classical AC'C properties and
implications for Noetherianity are also discussed.

Definition 2.1. A ring A is said to satisfy the ascending chain condition on divis-
ibility (ACCy) if for every ascending chain of ideals

LCLC;C---,
there exists an integer k such that for all i > k, there exists an element a; € A with
I = ailitq.

Let I; C I C I3 C --- be an ascending chain in a ring A satisfying ACCy. We
denote by ky the smallest integer such that for all ¢ > kj, I; = a;l;41 for some
a; € A.

Proposition 2.2. Let A be a ring satisfying the ACCy condition. Then the following
assertions hold:

(1) If the set of finitely generated ideals in an ascending chain is infinite, then
there exists an integer K such that for all n > K, the ideals I, are finitely
generated.

(2) If the set of principal ideals in an ascending chain is infinite, then there
exists an integer K such that for all n > K, the ideals I, are principal.

Proof. (1) Let I; C I, C --- be an ascending chain of ideals in A, and suppose
the number of finitely generated ideals in the chain is infinite. Since A satisfies the
ACCy condition, there exists an integer N such that for all n > N, I, = x,, 1,41 for
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some z, € A. Let i > N. Because the number of finitely generated ideals is infinite,
there exists K > i such that I is finitely generated. Then I; = x;x [k is finitely
generated as well. Hence, all ideals I, with n > K are finitely generated.

(2) The argument is similar to (1), replacing “finitely generated” with “principal.”
O

Theorem 2.3. Let A be a domain satisfying ACCy. Then every ascending chain of
absorbing ideals in A is stationary; that is, A satisfies the ACC on absorbing ideals.

To prove this theorem, we first need two lemmas.

Lemma 2.4. Let A be a domain, and let
PPCPhC---CPCP

be an ascending chain of nonzero ideals such that P; is n-absorbing and for each
i €{l,...,n}, P, = x;Piy1 for some x; € A. Then there exists k < n such that
Py = Pryq.

Proof. By hypothesis, P; = (H;n:Z xj) Pt for all i <m < n. Let ypt1 € Poy1.
Then
T1 TpYnt1 € Pr.
Since P is n-absorbing, either z; - - - x,, € P or there exists j € {1,...,n} such that
Ty Ty TpYngr € P,

where € indicates omission. In the first case, x1 - - & € 1 - - £ Ppy1, which implies
1 € P,41—a contradiction since A is a domain and P,,41 is proper. Thus, we must
have yn+1 € z;FP,41, and hence P41 = x;P,41. This implies P; 1 = F; as desired.
O

Lemma 2.5. Let A be a domain satisfying ACCy, and let
P CPC---

be an ascending chain of ideals such that P, is m-absorbing for some n > kp. Then
the chain is stationary.

Proof. Assume for contradiction that the chain is not stationary. Then there exists
a strictly increasing subchain

1 CQ2C---
with Q; = ©;Q;+1 for all i > Kp and some x; € A. Apply Lemma 2.4 to the segment

Qn g QnJrl g g Qn+m7

where @, is m-absorbing. Then there exists k such that Qr = Qxy1, contradicting
the strict inclusion @ C Qx+1. Therefore, the original chain must be stationary. O

Proof of Theorem 2.3 Let A be an ACCy domain and let
PCPC---

be an ascending chain of ideals such that each P; is k;-absorbing for some integer k;.

Then the chain satisfies the assumptions of Lemma 2.5, and hence it is stationary.
O
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Corollary 2.6. Let A be a ring. If A satisfies the ACCy condition, then every
ascending chain of absorbing ideals that contains a prime ideal is stationary.

Proof. Let A be an ACCy ring and
P CPC.--

an ascending chain of absorbing ideals such that Py is a prime ideal for some k& > 1.
Then the induced chain

Piy1/ Py C Prya/Pp C -+
is an ascending chain of absorbing ideals in the domain A/Py, which also satisfies
the ACCy condition. Therefore, the chain stabilizes. Hence, the original chain is
stationary. ([

Corollary 2.7. Let A be an ACCy domain. Then every ascending chain of ideals
contains only finitely many absorbing ideals.

Corollary 2.8. Let A be an ACCy ring. Then every ascending chain of ideals that
contains a prime ideal contains only finitely many absorbing ideals.

Corollary 2.9. Let A be an ACCy domain, and let
PCPRC--

be an ascending chain of ideals. Suppose there exists an integer K such that for all
1> K, P, = z; P11 for some x; € A, and that P, is absorbing for some n > K.
Then the chain is stationary.

Proof. By assumption, the chain satisfies the ACCy condition, and there exists
n > K such that P, is m-absorbing. Then, by Theorem 2.3, the subchain

Py C Py C---
is stationary, and hence the entire chain is stationary. [l

It is well known that over a Noetherian ring, a module is Noetherian if and only if
it is finitely generated. The following proposition gives a similar result in the ACCy
context.

Proposition 2.10. Let A be an ACCy ring and M an A-module such that Ann(M)
is not contained in any principal ideal. Then M is Noetherian if and only if it is
finitely generated.

Proof. Suppose M is a finitely generated A-module, and assume that Ann(M)
is not contained in any principal ideal. Then A/ Ann(M) satisfies the ACC on
principal ideals and has only finitely many zero-divisors (since A is ACCy). By
previous results, A/ Ann(M) is Noetherian. Therefore, M is a finitely generated
module over a Noetherian ring, hence Noetherian.

Conversely, if M is Noetherian, then it is in particular finitely generated. Hence,
the two conditions are equivalent. ([

Corollary 2.11. Let A be an ACCy ring and let I be an ideal of A such that Ann(I)
is not contained in any principal ideal. Then I is finitely generated if and only if
every ideal contained in I is finitely generated.

Corollary 2.12. Let A be a local ACCy ring and M an A-module such that Ann(M)
is maximal and not principal. Then M is Noetherian if and only if it is finitely
generated.
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Corollary 2.13. Let A be an ACCy ring and I an ideal such that Ann(I) is mazimal
and not principal. Then I is finitely generated if and only if every ideal contained
in I is finitely generated.

Proposition 2.14. Let A be a valuation domain satisfying the ACCy condition.
Then:

(1) There exists only one chain of absorbing ideals, and this chain is finite.
(2) The ring A has finite Krull dimension.

Proof. Let A be a valuation domain satisfying the ACCy condition.

(1) Let (P): Py C P, C -+ and (Q) : Q1 C Q2 C --- be two ascending chains
of absorbing ideals in A. By Theorem 2.3, each chain must be finite. Assume that
these chains are maximal with respect to inclusion. Then no absorbing ideal exists
strictly between any two successive ideals in either chain. Hence, for every i, there
exists j such that Q; = P;. Therefore, the two chains coincide, and there exists only
one such chain.

(2) Since every prime ideal is absorbing in a valuation domain, the uniqueness
and finiteness of the chain of absorbing ideals implies that there is only one chain
of prime ideals. Hence, the Krull dimension of A is finite and equals the length of
this chain. O

Theorem 2.15. Let A be a ring satisfying the ACCy condition. Assume that A has
only finitely many zero-divisors and that every descending chain of principal ideals
is stationary. Then A is Noetherian.

To prove this theorem, we need the following lemma. First, note that for an
ACCy ring and an ascending chain

LCLCIl3C- -,
we can associate a descending chain of principal ideals via the relation I; = z;1; 14
for i > K. Iterating this relation yields
Iy = opapqr - o1l = agd;.
Then the associated descending chain of principal ideals is
apA 2D ag1AD -,
which we denote by DCP(I).

Lemma 2.16. Let A be an ACCy ring, and let I : Iy C Iy C --- be an ascending
chain of ideals. Suppose that DCP(I) is stationary and that each I; contains a
non-zero-divisor. Then the chain (I) is stationary.

Proof. Assume that DCP(I) is stationary, i.e., apA = an41A for all n > k. Then
an = Tany1 for some x € A, and so

Ap = T+l " Tp—1 = TLET4]1 " Tp—1Tn.
Hence,
TpThy1 - Tp—1(1 — zxp) = 0.

Since the product zizgi1 - - - xp—1 is not a zero-divisor by assumption, we must have
1—ax, =0, ie., x, is a unit. Therefore, I, = I, for all n > k, and the chain is
stationary. ([l
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Proof of Theorem 2.15 Let I; C Is C --- be an ascending chain of ideals in A.
Since A satisfies ACCy, there exists N such that I, = xp Iy for all £ > N. Because
the number of zero-divisors in A is finite, there exists K > N such that I} contains no
zero-divisor for all £ > K. By hypothesis, the associated descending chain DCP(T)
is stationary. Hence, by the lemma, the chain (I) is stationary. Therefore, A is
Noetherian. O

Corollary 2.17. Let A be a domain satisfying ACCy, and let
LCLCI3C -

be an ascending chain of ideals. If the associated descending chain of principal ideals
DCP(I) is stationary, then the chain (I) is also stationary.

Proof. This follows from the fact that a domain has no zero-divisors, so the lemma
applies immediately.

Corollary 2.18. Let A be a ring satisfying ACCy, and let
LHCLCI3C---

be an ascending chain of ideals that contains a prime ideal. If the associated de-
scending chain of principal ideals DCP(I) is stationary, then the chain (I) is also
stationary.

Proof. Let P = I; be a prime ideal, and consider the chain modulo P:
L/PCI/PC---,
and the associated descending chain
apA/P D ag 1 A/P D

Since A/P is a domain and satisfies ACCy, and DCP(I)/P is stationary, Corol-
lary 2.17 implies that the chain I,/ P is stationary. Hence, the original chain is also
stationary. U

Proposition 2.19. Let R be a ring. Then the following statements hold:

(1) If R satisfies the ACCy condition, then so does ST'R for any multiplicative
subset S of R.

(2) If R is a semi-local ring and S~ R satisfies ACCy for each S = R\ M, where
M is a maximal ideal of R, then R satisfies ACCy.

Proof. (1) Let I; C I C I3 C --- be an ascending chain of ideals in R. Then the
localized chain
571[1 - 571[2 - 571[3 c...

is an ascending chain of ideals in ST'R. Since R satisfies ACCy, there exists an
integer k € N such that for all ¢ > k, there exists a; € R with I; = a; ;1. It follows
that _

ST = S ailiy1) = (%) ST,
so STIR satisfies ACCy.

(2) Let R be a semi-local ring with maximal ideals My, Ma, ..., M. Let I; C I C
.-+ be an ascending chain of ideals in R. For each i = 1,2,...,t, let S; = R\ M;.
Then the localized chain

s'ncstnc-
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is an ascending chain of ideals in S; 'R, which satisfies ACCy by assumption. Thus,
for each i, there exists k; € N such that for all j > k;, there exists Z—J € S;lR with
J

_ a; _ _

Si 1Ij == (;) Sz 1[j+1 = Si l(a]‘Ij+1).
j

Let k = max{ki,ka,...,kt}. Then for all j > k, the equality Si_l(ajlj) = Si_llj_i,_]_

holds for all i. By [9, Corollary, p. 164], it follows that a;I; = I;;1 in R for all j > k.

Therefore, R satisfies ACCy. O

Corollary 2.20. Let R be a semi-local ring. Then the following statements are
equivalent:
(1) R satisfies ACCy.
(2) STIR satisfies ACCy for each S = R\ M, where M is a mazimal ideal of
R.

Proof. This follows directly from Proposition 2.19. O

Let us recall two related constructions. Let A and B be rings, J an ideal of B,
and f : A — B aring homomorphism. The amalgamation of A and B along J with
respect to f is the subring of A x B defined by

A J:={(a,f(a)+7j)|ac A, jeJ}

This construction generalizes the amalgamated duplication of a ring along an ideal,
introduced and studied by D’Anna, Finocchiaro, and Fontana in [1, 2, 3, 4, 5]. See
[8] for a survey on this topic.

Theorem 2.21. Let f: A — B be a ring homomorphism and let J be an ideal of
B. Then:

(1) If A</ J satisfies the ACCy condition, then so does A.
(2) If A >l J satisfies the ACCy condition and J C Ann(Im f \ {1}), then
J2=J.

Proof. Let f: A — B be a ring homomorphism and let J be an ideal of B.
(1) Assume that A >/ J satisfies the ACCy condition. Then, by [6, Example
4.2(3)], the quotient

(Al )0 )= A
also satisfies ACC,. Hence, A inherits the ACCy property.
(2) Let
LHhoL2---2I,2---
be a descending chain of ideals of A. Then the corresponding chain
IlmeZ_)[defJ:_)~~:_>Inl>de:_>~'

is a descending chain of nonzero ideals in A >/ J. Since A </ J satisfies ACCy,
there exists an integer k such that for all i > k,

Lol T = (b, f(by) + £) (I vl )

for some element (b;, ;) € A/ J.
Let aj4+1 € I; 1 and j;41 € J. Then there exist a; € I; and j; € J such that:

(ait1, faiv1) + Jiv1) = (bi, £(bi) + €i)(ai, f(ai) + i)
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Multiplying in A </ .J, we obtain:
air1 = bia;,
flaiv1) + jiv1 = bif(a;) + biji + aili + £; f(a;) + €iji.
Using the assumption J C Ann(Im f \ {1}), we have:
bif(a;) =0, biji=0, ail;=0, Lif(a;)=0.

Hence,

flaiv1) + jiv1 = 4iji,
S0 jir1 = ;j;. This is true for all j;4; € J. Therefore, J?> = J, as claimed. O

3. MODULES WITH ASCENDING DIVISIBILITY ON SUBMODULES

In this section, we present results concerning modules that satisfy ascending di-
visibility on submodules. This notion was introduced by R. Dastanpour and A.
Ghorbani in [6] as follows:

Let M be an R-module. Then M is said to satisfy the ascending chain condition
on divisibility (ACCy) if for every ascending chain of submodules

Ny CNyCN3C---CN,C---,

there exists, for each ¢ > 0, an endomorphism ¢; € Endr(M) such that N; =
©i(Nit1).

In this paper, we consider a special case where each ¢; is multiplication by an
element a; € A, ie., ¢;(x) = a;x for all x € M. This leads us to the following
definition:

Definition 3.1. An A-module M is said to satisfy the ascending chain condition
on divisibility (ACCy) if for every ascending chain of submodules
N1 CNyCNgC-vo
there exists an integer k such that for all i > k, there exists a; € A with
N; = a;iNiy1.
Proposition 3.2. Let M be an A-module satisfying the ACCy condition. Then

every free submodule of M is finitely generated.

Proof. Let M be an A-module satisfying ACCy, and let N C M be a free
submodule. Let (z;);er be a basis of N. Suppose for contradiction that I is infinite.
Define a chain of submodules by
N; := Axq1 + Axg + -+ -+ Ax; for each i € N.

Then N; € Ny C --- is an ascending chain in M. Since M satisfies ACCy, there
exists an integer k such that NV; = a;N;y1 for some a; € A for all ¢ > k.

In particular, z;41 € N;41 implies that a;x;11 € N;. So there exist by, ba, ..., b; €
A such that

aiTit1 = bixy + baxg + - - - + biz;.

This contradicts the assumption that (x;);cr is a free set, since x;41 would be A-
linearly dependent on {x1,...,x;}. Therefore, I must be finite, and N is finitely
generated. U

Corollary 3.3. Let A be a ring satisfying ACCy, and suppose that the module ALY
satisfies ACCy. Then the index set I must be finite.
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Proof. The module AY) is a free A-module. By the proposition above, any free
submodule of an ACCy module is finitely generated. Hence, I must be finite. O

[\
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