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MODULES SATISFYING THE DIVISIBILITY CONDITION ON
DESCENDING CHAINS

HWANKOO KIM*, SALAH EDDINE MAHDOU, AND OUSSAMA AYMANE ES SAFI

ABSTRACT. This paper deals with modules satisfying the divisibility condition
on descending chains, denoted by DCCy . This notion was introduced by R.
Dastanpour and A. Ghorbani as a generalization of Artinian modules. The
goal of this paper is to further explore this class of modules. For instance, we
study the behavior of finitely generated and principal ideals within descending
chains. Among the main results, we present a theorem concerning modules
over a DCCy ring. In the final part of the paper, we examine some proper-
ties of DCCy modules. For example, we show that there are no free DCCy
(respectively, Artinian) modules over a domain that is not principal. Finally,
we conclude this work by investigating the transfer of the DCCy property to
trivial ring extensions.

1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with identity,
and all modules are unital. If A is a ring, we denote by Nil(A) the set (ideal) of
all nilpotent elements of A, and by tq(A) = A4\ z(a) the total ring of quotients of
A. An ideal is said to be regular if it contains a regular element (i.e., a non-zero-
divisor).

In [4], R. Dastanpour and A. Ghorbani introduced a generalization of modules
satisfying the descending chain condition (DCC). A module M is said to satisfy the
epi-DCC on submodules if, in every descending chain of submodules of M, all but
finitely many terms are homomorphic images of their predecessors.

In this paper, we define a subclass of such modules as follows: an A-module M
is said to satisfy the descending chain condition on divisibility (denoted DCCy) if,
in every descending chain of submodules

N1 DNy D N3 D -

of M, there exists an integer k such that for all i > k, there exists an element
a; € A with a; N; = N;11. If each a; is a unit in A, then M is Artinian.

Let A be a ring and E an A-module. The trivial ring extension of A by E is the
ring whose underlying additive group is A @ E, and whose multiplication is defined
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by

(a,e)(b, f) := (ab,af + be)
for all a,b € A and e, f € E. The basic properties of trivial ring extensions are
detailed in [6] and [7], and this construction has been widely used to produce new
examples of rings with specific properties (see [1, 2, 5, 8]).

For simplicity, we refer to modules satisfying the descending chain condition on
divisibility by the abbreviation DCCy.

The remainder of this paper consists of two sections. In the first section, we
study the distribution of finitely generated submodules in descending chains of
DCCy submodules. Specifically, we show that in such a chain, either the number of
finitely generated submodules or the number of non-finitely generated submodules
is finite.

We also investigate localization, direct products, and homomorphic images of
DCCy modules. Before closing the section with results concerning the transfer
of the DCCy condition to trivial ring extensions, we establish several important
results. For example, we show that if a torsion A-module satisfies DCCy, then A
itself is a DCCy ring. As a consequence, over a domain that is not principal, there
are no free DCC,; modules. In particular, such domains admit no free Artinian
modules.

It is well known that if M is an Artinian A-module, then every monomorphism
in Homy4 (M, M) is an epimorphism. By providing a counterexample, we show that
this property does not generally hold for DCCy modules. Furthermore, we give
sufficient conditions under which a DC'Cy module does satisfy this property.

2. RESULTS

In this section, we investigate modules satisfying the divisibility condition on
descending chains of submodules.

Definition 2.1. An A-module M is said to satisfy the descending chain condition
on divisibility (DCCy) if for every descending chain

Ni2NaDON3 22Ny 2+
of submodules of M, there exists an integer n such that for all i > n, there exists

an element a; € A with N; = a; N;41.

Example 2.2. Let A be a DCCy ring. Then every ideal of A is a DCCy A-module.
This holds since every submodule of a given ideal is itself an ideal of A.

Example 2.3. The ring Z[X] does not satisfy DCCy as a Z-module. Consider the
descending chain

XZ[X] 2> X?Z[X] D> - D X"Z[X] D - .
For every m € N, we have mX"Z[X] # X"T1Z[X]. Hence, the divisibility condition
fails.

Remark 2.4. Let A be a ring. It is well known that the submodules of A (viewed
as a module over itself) are precisely its ideals. Therefore, A is a DCCy ring if and
only if it is a DCCy; A-module.

The following result concerns the distribution of finitely generated submodules
in a descending chain of a DC'Cy module.
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Proposition 2.5. Let A be a ring and M an A-module satisfying the DCCy con-
dition. Then the following assertions hold:

(1) If the number of finitely generated submodules in a descending chain My D
My D - -+ is infinite, then there exists an integer K such that for alln > K,
M, is finitely generated.

(2) If the number of cyclic submodules in a descending chain My D My D - --
is infinite, then there exists an integer K such that for all n > K, M, is
cyclic.

Proof. Let My D My O --- be a descending chain of submodules of an A-module
M satistying the DC'Cy condition.

For part (1), assume that the number of finitely generated submodules in the
chain is infinite. Since M satisfies the DC'C, condition, there exists an integer k
such that for all n > k, we have M, 11 = a,M, for some a, € A. Let p > k
be an integer. Since the number of finitely generated submodules is infinite, there
exists m > p such that M, is finitely generated. But then M, = a,m, M,, for some
apm € A, and hence M, is also finitely generated. Repeating this argument shows
that all M,, with n > m are finitely generated.

Part (2) follows by the same argument, replacing “finitely generated” with
“cyclic” and observing that the image of a cyclic module under multiplication re-
mains cyclic. (]

In the following proposition, we investigate the transfer of the DC'C, property
to direct sums of modules.

Proposition 2.6. Let A be a ring and I an index set. Then:
(1) If AD) is a DCCy A-module, then AY) is a DCCy ring.
(2) If I is an infinite set, then AY) does not satisfy DCCy as an A-module.

Proof. Let A be a ring and I an index set.
(1) Assume that AU is a DCCy A-module. We show that AU is a DCCy ring.
Let
L D>~ DI, D

be a descending chain of ideals of A, Since each ideal of AU) is an A-submodule
and AU satisfies the DCCy condition, there exists an element a € A and an integer
K such that for alln > K, we have I, 11 = al,. Since scalar multiplication in AW ig
componentwise, this implies that for all x = (x;) € I,,, we have ax = (ax;) € Lh41.
Hence, the chain of ideals satisfies the divisibility condition, and so AY) is a DCCy
ring.

(2) Let I be an infinite index set. Suppose for contradiction that A satisfies
DCCy on submodules. Then, by part (1), AY) would also satisfy DCCy as a ring.
However, according to [3], this is not the case. Therefore, A/ ) cannot satisfy DCCy
on submodules. (I

Proposition 2.7. Let A be a DCCy ring. If A? is a DCCy; A-module, then A is
Artinian.

Proof. Let A be a DCC, ring such that A2 is a DCC; A-module. We show that
A is Artinian. Let
LO>LD>---DI, D
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be a descending chain of ideals of A. Then
Le®ADLB®AD--- DL, ®AD---

is a descending chain of submodules of the A-module A® A = A2, Since A? satisfies
the DCCy condition, there exists an element a € A and an integer K such that for
alln > K,

Iny1®A=a(l, dA).
This implies that I,,41 = al, and A = aA. Therefore, a is a unit in A and so
I+1 =1, for all n > K. Hence, the chain stabilizes, and A is Artinian. O

Corollary 2.8. Let A be a ring and I an index set. Then AY) need not satisfy the
DCCy condition as an A-module.

Proposition 2.9. Let M and N be A-modules, and let f : M — N be an epimor-
phism. If M is a DCCy A-module, then N is also a DCCy A-module.

Proof. Let Ny D N3 D --- be a descending chain of submodules of N. Consider
the corresponding chain of preimages under f:

FHN) D N2 D
which is a descending chain of submodules of M. Since M satisfies the DCCy

condition, there exists an integer K and elements a, € A such that for all n > K|
we have

f_l(NnJrl) = anf_l(Nn)'
Applying f and using that f is an epimorphism, we get

Npy1= f(f_l(NnJrl)) = f(anf_l(Nn)> = anf(f_l(Nn)) = an Ny,
for all n > K. Thus, N satisfies the DC'Cy condition. O

Corollary 2.10. Let M be a DCCy A-module and N a submodule of M. Then:

(1) N is a DCCy A-module.
(2) M/N is a DCCy A-module.

Proof. (1) Let N be a submodule of a DCCy A-module M. Any descending
chain of submodules in N is also a descending chain in M, hence it satisfies the
divisibility condition. Therefore, N is DCCy.

(2) Since the canonical projection M — M/N is an epimorphism, the result
follows from Proposition 2.9. O

Corollary 2.11. Let A be a DCCy ring. Then every finitely generated A-module
satisfies the DCCy condition.

Proof. Let M be a finitely generated A-module. Then there exists an integer
n € N and a surjective homomorphism f : A — M. Since A is a DCCy ring,
the free module A™ is a DCC; A-module. Hence, by Proposition 2.9, M is also a
DCCy A-module. O

Definition 2.12. Let A be a DCCy ring. An A-module M is said to be A-finite if
there exists a nonzero element a € A and a finitely generated submodule N of M
such that aM C N. If the element a is regular (i.e., not a zero-divisor), then M is
called A, -finite.

Corollary 2.13. Let A be a DCCy ring. Then every Ag-finite A-module satisfies
the DCCy condition.
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Proof. Since M is A,-finite, there exists a regular (i.e., non-zero-divisor) element
a € A and a finitely generated submodule N of M such that aM C N. The
regularity of a implies that M = aM C N, and thus M is a submodule of a finitely
generated module. Since A is a DCCy ring, N is DCCy by earlier results, and
hence so is M. O

Definition 2.14. Let A be a ring, M an A-module, and T a family of submodules
of M. An element N € T is said to be weakly A-minimal in T if for every L € T
with N C L, there exists a nonzero element a € A such that aL C N. A submodule
N of M is called weakly A-minimal if it is weakly A-minimal in the set of all nonzero
submodules of M.

Proposition 2.15. Let A be a ring and M an A-module that is weakly A-minimal.
If M = My & Ms, then My and My are torsion modules.

Proof. Assume M = M; & M, with M; # 0 and My # 0. Since M; C M,
and M is weakly A-minimal, there exists a nonzero element a; € A such that
a1(My; ® My) € M;. In particular, a; My € M; N Ms = 0. Hence, ay My = 0,
showing that Ms is a torsion module. A symmetric argument shows that M is also
a torsion module. O

Let M be an A-module and a € A. We say that a is a non-zero-divisor on M if
for every m € M, the relation am = 0 implies m = 0.

Proposition 2.16. Let A be a ring and M an A-module. Then the following
statements are equivalent:

(1) M is a DCCyq A-module.

(2) Every nonempty set of submodules of M has a weakly A-minimal element.

Proof. (1) = (2): Let T be a nonempty set of submodules of M that contains
no weakly A-minimal element. Choose N; € T. Since Nj is not weakly A-minimal,
there exists Ny € T with No € Nj such that for all nonzero a € A, aNy € Nj.
Proceeding inductively, we obtain a strictly descending chain

Ni 2Ny DNz D -+,

such that no N; satisfies the divisibility condition with respect to the next. This
contradicts the DCCy property of M. Hence, every nonempty set of submodules
must have a weakly A-minimal element.

(2) = (1): Let Ny 2 N3 O N3 D --- be a descending chain of submodules of
M. Let T = {N; | i > 1}. By hypothesis, T" has a weakly A-minimal element,
say Ni. Then for each n > k, there exists a nonzero element a,, € A such that
anNp € N € Npy1 € Ny, so ap Ny, = Npy1. This shows that the chain satisfies
the divisibility condition, and thus M is a DCCy; A-module. O

Remark 2.17. Let A be a ring and [ an ideal of A. Then:

(1) A/I is a DCCy ring if and only if it satisfies the DC'Cy condition as an
A-module.

(2) If Aisa DCCy ring, then A/I satisfies the DC'Cy condition as an A-module
for every ideal I of A.

Proposition 2.18. Let A be a ring, and let I C J be ideals of A. If A/J satisfies
the DCCy condition as an A-module, then A/l also satisfies the DCCy condition
as an A-module.
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Proof. Assume that A/J satisfies the DCCy condition as an A-module. Let
L/IDL/ID - DI,/ ID---

be a descending chain of submodules of A/I. Since I C J, this induces a descending
chain

]1/J2]2/J2...QIH/J2...

in A/J. By assumption, there exists an integer K such that for all n > K, there
exists a,, € A with I,41/J = an,(I,/J). It follows that I,,y1 = a,l,, and thus
Iny1/I = an(I,/I). Therefore, A/I satisfies the DCCy condition as an A-module.
(Il

Proposition 2.19. Let M be a DCCy A-module and S a multiplicative subset of
A. Then S™'M is a DCCy S~ A-module.

Proof. Let
STINy DS 'Ny D DSTIN; D

be a descending chain of submodules of S~'M, where each N; is a submodule of
M. Since M is a DCC; A-module, there exists an integer K and elements a,, € A
such that N, 41 = a, N, for all n > K. Then,

S~ Npiq = (an/1) - SN,

for all n > K. Therefore, S™'M satisfies the DCCy condition as an S~ A-module.
]

Proposition 2.20. Let A be a ring and M an A-module satisfying the DCCy
condition, such that Z(M) # 0. Then A satisfies the DCCy condition.

Proof. Let x € M be such that Ann(z) = 0. Then the map ¢ : A — M defined
by ¢(a) = ax is injective and identifies A with the submodule Az C M. Since M is
a DCCy; A-module and Az is a submodule, Az is also DCCy, and hence A & Ax
satisfies the DCCy condition. Therefore, A is a DCCy ring. O

Corollary 2.21. Let A be a ring and M an A-module satisfying the DCCy con-
dition on submodules. If A is a domain and M is a torsion-free A-module, then A
is a principal ideal domain.

Proof. Let A be a domain and M a torsion-free A-module satisfying the DCCy
condition. By Proposition 2.20, A satisfies the DCCy condition on submodules,
and hence on ideals. According to [3], a domain satisfying DCCy on ideals must
be a principal ideal domain. O

Remark 2.22. Over a domain that is not principal, there exists no free module
satisfying the DCCy condition. In particular, there are no free Artinian modules
over such a ring.

Corollary 2.23. Let A be a ring. Then the following statements are equivalent:
(1) Ais a DCCq ring.
(2) Ais a DCCy; A-module.
(8) FEvery regular ideal of A is a DCCy A-module.

(4) There exists a regular element © € A such that the principal ideal Az is a
DCCy A-module.
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Proof. (1) <= (2): This equivalence follows directly from Remark 2.4, which
states that the DCCy property of a ring coincides with that of the ring viewed as
an A-module.

(2) = (3): Every regular ideal is a submodule of A, and thus inherits the DCCy
property by Corollary 2.10.

(3) = (4): This is a special case, taking any regular element z € A and consid-
ering the principal ideal Az.

(4) = (2): If x is a regular element of A, then the A-module Az is isomorphic
to A, so the DCCy property of Az implies that A is a DCCy A-module. (]

Example 2.24. (1) Let A be a domain which is not a field. Then A[X] does
not satisfy the DCCy condition on submodules. Hence, A[X] is not Ar-
tinian as an A-module.

(2) Let A be a domain which is not a field. Then A[X,Y] is not a DCCy
A[X]-module. Therefore, A[X,Y] is not Artinian as an A[X]-module.

(3) Z[X,Y] is not a DCCy Z[X]-module. Therefore, Z[X,Y] is not Artinian
as a Z[X]-module.

Proposition 2.25. Let A be a ring and M an A-module.
(1) Suppose that A satisfies the DCCy condition, and let Ny C Ny C ---
be an ascending chain of submodules of M. Then the chain Ann(N;) D
Ann (N2) D -+ is stationary.
(2) Suppose that M is a torsion-free A-module satisfying DCCy, and let Ny D
Ny D -+ be a descending chain of submodules of M. Then the chain
Ann (Ny) 2 Ann (Ny) D -+ is stationary.

Proof. (1) Let A be a DCCy ring and N; C Ny C --- an ascending chain of
submodules of M. Then the corresponding chain of annihilators

Ann (N;) D Aun (Ng) D - --

is descending in A, which satisfies DC'Cy. Therefore, there exists an integer n such
that for all k& > n, Ann (Ni41) = ax Ann (Ny) for some ay € A.

To show that Ann (Nj11) = Ann (Ng), let £ € Ann (V) and y € Ni41. Since

Ann (Ngy1) = ag Ann (N ), we may write y = agz for some z € Ni. Then,

xy = z(agz) = ap(xz) =0,
which implies € Ann (Nj41). Hence, Ann (Ng) = Ann (Ng41), and the chain is
stationary.

(2) Suppose M is a torsion-free A-module satisfying DCCy, and let Ny D Ny D
-+ be a descending chain of submodules. Then there exists K such that for all
n > K, we have N, 11 = a, N, for some a,, € A.

Let € Ann (N, 41) and y € N,,. Then a,y € N,41, SO

anTy = xany = 0.
Since M is torsion-free, it follows that zy = 0, i.e., x € Ann (N,,). Thus,
Ann (N,41) € Ann (N,,),
and the chain of annihilators is descending and eventually constant. O

Corollary 2.26. Let A be a ring and M a free torsion-free A-module satisfying
the DCCy condition. Then the following assertions hold:
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(1) If Ny C Ny C -+ is an ascending chain of submodules of M, then the chain
Ann (N7) D Ann (N3) D - -+ is stationary.

(2) If Ny D Ny D -+ is a descending chain of submodules of M, then the chain
Ann (N7) € Ann (Ng) C -+ is stationary.

Proposition 2.27. Let A be a ring such that every element of A is either a regular
element or a unit, and let M be a DCCy A-module. Suppose f : M — M is a
monomorphism. Then one of the following holds:

(1) f is surjective;

(2) There exists a nonzero element a € A such that aM = 0.

To prove this, we need the following lemma:

Lemma 2.28. Let A be a ring, M an A-module, and f : M — M a monomorphism.
If there exists an integer n such that Im(f™) = Im(f"*1), then f is surjective.

Proof. Lety € M. Then f*(y) € Im(f™) = Im(f™*!). So there exists z € M such
that f(y) = f**(z) = f*(f(z)). Since f is injective, it follows that y = f(x),
hence f is surjective. O
Proof of Proposition 2.27. Let A be a ring in which every element is either a
zero-divisor or a unit, M a DCCy A-module, and f : M — M a monomorphism.
The chain
M 2 Tm(f) 2 Tm(f*) 2

is a descending chain of submodules of M, so by the DCCy condition, there exists
an integer K and elements a,, € A such that for all n > K,

Im(f"“) = a, Im(f").

If some a,, is a unit, then Im(f**1) = Im(f™), and by Lemma 2.28, f is surjective.

Otherwise, a,, is a zero-divisor. Then there exists b,, € A such that b,a, = 0.
We claim that b, M = 0.

Indeed, let z € M. Then f"*!(z) € Im(f™). Since Im(f" ') = a,, Im(f™), there
exists y € M such that f"*1(z) = a, f"(y), and so
f*(an

[(f(2) = y) = anf"(y).
Applying b,, and using b,a,, = 0, we get

[ (f(bnz)) = bnfn+l(z) = bpanf"(y) =

Since f is injective, this implies f"(b,z) = 0, and thus by injectivity again, b,z = 0.
Therefore, b, M = 0. (I

Corollary 2.29. Let n be a positive integer and let M be a DCCyq Z/nZ-module
such that Ann(M) = 0. Then every monomorphism of M is surjective.

Proof. The result follows from the fact that every element of Z/nZ is either a
zero-divisor or a unit. O

Corollary 2.30. (1) Let A be a ring, R its total ring of quotients, and M a
DCC4 R-module such that Ann(M) = 0. Then every monomorphism of M
18 surjective.
(2) Let A be a DCCy ring and R its total ring of quotients. Then every
monomorphism of R is surjective.
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Proof. (1) This follows from the fact that in a total ring of quotients, every
element is either a unit or a zero-divisor.

(2) Since R is the total ring of a DCCy ring, R is also a DCCy ring. Apply part
(1) with M = R. O

Corollary 2.31. Let A be an Artinian ring and M a DCCy A-module such that
Ann(M) = 0. Then every monomorphism of M is surjective.

Proof. This holds because in an Artinian ring, every element is either a zero-
divisor or a unit. O

We now present a main result concerning the transfer of the DCCy property to
trivial ring extensions.

Theorem 2.32. Let A be a ring and E an A-module, and let R := A o< E be the
trivial ring extension of A by E. If R satisfies the DCCy condition as an A-module,
then the following statements hold:

(1) Ais a DCCy ring and E is a DCCq A-module.
(2) If for every a € A with a # 1, we have E # oF, then A is Artinian.

Proof. (1) Suppose R satisfies the DCCy condition as an A-module. Let
L D2LD---DI,D---
be a descending chain of ideals of A, and
NyDNyD---DN,D---
a descending chain of submodules of E. Then the chain
[ixNtDIhbxNyD---DOI,xN, D---

is a descending chain of submodules of R. Since R is DC'Cy, there exists an integer
K and elements a,, € A such that for all n > K,

Int1 X Npt1 = an(l, x Np).

This implies I,,y1 = a, I, and N,4+1 = a, Ny,. Therefore, A is a DCCy ring and E
is a DCCy A-module.
(2) Again, suppose R satisfies DCCy, and consider the descending chain

L xEDILxED---DI,xED---.
As before, there exists an integer K and elements a,, € A such that for all n > K,
Iny1 x E = a,(I, x E),

which gives I,,41 = anl, and E = a,FE. By hypothesis, a, = 1 for all n > K.
Hence, I,+1 = I,, and the chain stabilizes, showing that A is Artinian. O

Corollary 2.33. Let E be a Z-module such that for all a € Z with a # 1, we have
E #aE. Then Z < E is not a DCCy Z-module.

Example 2.34. Let A be a ring. Then Z x A[X] is not a DCCy Z-module.
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