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UNAMBIGUOUS CONTEXT-FREE GRAMMARS BASED
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ABSTRACT. Formal languages are widely used in theoretical computer
science and its various applications. A generative grammar allows us
to form the set of all words of the corresponding formal language by
applying possible combinations of production rules. If we fix the length
of the generated words, then the set defined by the grammar will be
finite. However, further work with such combinatorial sets often re-
quires knowing a formula for calculating the number of elements they
contain. In the case of using an unambiguous context-free grammar,
we can construct a generating function associated with it. This article
considers the problem of obtaining explicit formulas for the coefficients
of generating functions associated with unambiguous context-free gram-
mars. The authors propose a method for solving this problem based
on the application of the Lagrange inversion formula and compositae of
generating functions. In order to test the proposed method, the article
also presents several examples of finding explicit formulas for calculating
the number of words with a fixed length, which are derived from a given
unambiguous context-free grammar.
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1. INTRODUCTION

A formal language is a set of words obtained using a given finite alpha-
bet. Formal languages are widely used in the field of theoretical computer
science and its various applications. The abstract description of discrete
structures obtained by applying the theory of formal languages formalizes
the processes associated with their syntactic and semantic analysis. In turn,
this allows us to achieve a deeper understanding of the studied object and
makes it possible to develop effective algorithms for processing the asso-
ciated information. A well-known example of the use of formal language
theory is the field of modern programming languages and their compilers.
In this case, formal grammars are used as a tool for describing the syntactic
structures of a programming language [1].

A generative grammar allows us to form the set of all words of the corre-
sponding formal language by applying possible combinations of production
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rules. Thus, applying a generative grammar that produces some discrete
structures, we can create a set of correct samples. Then, such a set of correct
samples can be used to check the correctness of the algorithms that process
the corresponding discrete structures. In addition, the inverse problem is
possible when we have a test sample and we need to check its correctness.
For example, in the field of modern programming languages, this is used
to check the syntax of a program’s source code for its correctness. In this
case, the source code of the program is a word, and it is necessary to check
the possibility of generating this word by applying the production rules of
generative grammar corresponding to the selected programming language.

If we fix the length of the generated words, then the set defined by
the grammar will be finite. In this way, a combinatorial set is formed, the el-
ements (combinatorial objects) of which are words of a given length from
the corresponding formal language. One of the tasks associated with pro-
cessing combinatorial sets is the development of combinatorial generation al-
gorithms [2]. Combinatorial generation algorithms can number the elements
of a combinatorial set (ranking algorithms) and generate them by a single
variant (unranking algorithms or random generation) or by exhaustive gen-
eration [3]. For example, the development of combinatorial generation algo-
rithms for a set of words of a formal language defined by some generative
grammar can be useful in the following areas of research: the problem of
data compression and the problem of modeling complex discrete structures.

In terms of the first problem, the article [4] proposes an approach to com-
pressing data strings, which are words with a fixed length from some formal
language, by using a ranking algorithm. The proposed idea of ranking strings
is based on calculating the number of words from a formal language that are
less than a given word in lexicographic ordering. In particular, for an un-
ambiguous context-free grammar, formulas for calculating the rank with
polynomial computational complexity were presented in [4]. The possibili-
ties of generalizing ranking algorithms to ambiguous context-free grammars
were investigated in [5], and the paper [6] studied the issues of parallelizing
the corresponding computations.

Further development of this problem is proposed in the article [7], where
a ranking algorithm is presented together with an unranking algorithm for
a set of words with a fixed length from a formal language with polyno-
mial computational complexity. However, this study considers words that
describe a sequence of applying production rules of another context-free
grammar (words from the left Szilard languages), i.e., an additional repre-
sentation of the source data is used. The article [8] presents ranking and
unranking algorithms that can work with ambiguous context-free grammars
by processing parse trees. Also, as an example, the problem of compressing
the source code of a program in the C programming language was consid-
ered. Further development in this direction will make it possible to create
data compression algorithms based on formal grammars [9].

In terms of the problem of modeling complex discrete structures, the ar-
ticles [10, 11] consider the generation of a random word with a fixed length
by applying the production rules of a given context-free grammar in a ran-
dom order. In this case, to ensure uniform distribution of generated words,
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the author proposes preliminary calculation of probabilities for each out-
put rule, i.e., a probabilistic context-free grammar is formed. If we apply
an unranking algorithm for random generation, then the uniform distribu-
tion of generated words is ensured by using a random number generator.
A solution to the problem of non-uniform generation of words using an un-
ranking algorithm is proposed in [12]. For example, such combinatorial
generation algorithms allow modeling and compressing datasets of RNA
secondary structures [13, 14].

Examples of new ideas in the development of random generation algo-
rithms using context-free grammars include solving the hypergraph genera-
tion problem [15] and testing software for vulnerabilities [16]. In addition,
combinatorial generation algorithms for context-free languages are used in
the field of cryptography, for example, for format-preserving data encryp-
tion [8, 17, 18].

Thus, the development of new methods for constructing combinatorial
generation algorithms for formal languages is a relevant scientific task, since
it has both theoretical and practical significance due to existing applica-
tions in data compression and modeling problems. However, the correct
operation of combinatorial algorithms often requires a method for calcu-
lating the number of elements in the corresponding combinatorial set. For
example, to obtain an unranking algorithm using the framework presented
in [19], we need to have a function count(A,n) that returns the total num-
ber of objects of size n in a combinatorial set A. Similar requirements
exist when applying the method of obtaining unranking algorithms based
on AND/OR trees [20], where it is necessary to calculate the value of w(s),
i.e., the number of variants in the subtree structure of a node s.

In order to use combinatorial generation algorithms for a given formal
grammar, it is necessary to be able to calculate the cardinality of the set of
generated words. If we work with an unambiguous context-free grammar,
then, based on its production rules, we can obtain recurrent formulas for cal-
culating the number of words derived from the start symbol. Such recurrent
formulas are not efficient in terms of computational complexity. Therefore,
obtaining explicit formulas instead of recurrent ones is an important task of
optimizing the corresponding combinatorial algorithms.

Generating functions are a widely used tool in the field of enumerative
combinatorics [21, 22]. Research in the field of generating function theory is
constantly updated with new ideas that affect their relationship with special
numbers [23] and polynomials [24, 25], or consider their various generaliza-
tions [26]. The coefficients of a given generating function associated with
a combinatorial set show the number of elements in the set. In the case
of unambiguous context-free grammars, it is possible to get a generating
function for a sequence of numbers that are the number of derived words
with a fixed length. Therefore, the task of obtaining formulas for the co-
efficients of generating functions associated with context-free grammars is
important and relevant. For example, in [27] the authors consider the same
task with the usage of generating functions and show that this problem has
the complexity class NC. However, the authors do not present any specific
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rules for obtaining formulas for the coefficients of generating functions asso-
ciated with context-free grammars. At the same time, there are examples of
solving special cases where context-free grammars and generating functions
are used simultaneously (for instance, those related to special numbers and
polynomials [28, 29, 30]).

Thus, the main aim of this study is to develop a method for obtaining
explicit formulas for the coefficients of generating functions associated with
unambiguous context-free grammars. In Section 2, we described the main
concepts and methods used in this study. Then, we present own method
for obtaining coefficients of generating functions associated with unambigu-
ous context-free grammars. In order to test the proposed method, in Sec-
tion 3, we show several examples of finding explicit formulas for calculating
the number of words with a fixed length, which are derived from a given
unambiguous context-free grammar. A discussion of the obtained results is
shown in Section 4.

2. MATERIALS AND METHODS

2.1. Description of the used methods. A formal grammar is a tuple
G =(T,N, S, P), where:

e T is the set of terminal symbols of the grammar;

e N is the set of non-terminal symbols of the grammar, T N N = &;

e S is the start symbol of the grammar, S € N;

e P is the set of production rules of the grammar in the form a — 3,
where o € (NUT)*N(N UT)* is a sequence of grammar symbols
with at least one non-terminal symbol, 8 € (N UT)* is a sequence
of any grammar symbols.

By sequentially applying the production rules, starting from the initial
symbol of the grammar S € N, a sequence of terminal symbols (word)
w € T* is derived. The derivation of a word w € T™* is denoted by S =* w.
The language of the grammar G = (T, N, S, P) is the set of all words derived
from the start symbol S of the grammar, i.e.,

L(G)={weT"|S="w}.

This article discusses formal grammars that belong to the type of context-
free grammars [32, 31]. Such grammars contain only production rules of
the form o — 3, where @ € N and 8 € (N UT)*. In addition, we consider
the limitation on the length of words derived from a given formal grammar
G, i.e., we have a subset L, (G) C L (G), where each word w € L, (G) has
a fixed length |w| = n:

L, (G)={weT"|S="w, |w|=n}.

Therefore, for a fixed n, the formal grammar G = (T, N, .S, P) defines
a finite set L, (G) containing |L, (G)| distinct words with length n. Based
on the production rules P, we can easily derive the recurrent formula for
calculating the number of words with a fixed length n, which can be derived
from the formal grammar G. To obtain an explicit formula from a recurrent
one, it is necessary to apply appropriate techniques for solving recurrence
relations. However, this task is difficult and has no universal solution.
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If we consider different values of n, we obtain the following sequence of
values for the number of words derived from the formal grammar G:

(Lo (@), |[Lu(G)],  [L2(G)],

We can also represent this sequence as a generating function as follows:

Lo (G)|+]L1 (G)| 2+ L2 (G)] 2°+...= > |Ln (G)] 2" =) s(n)a"=5(x).

n>0 n>0

Thus, the coefficients s(n) of the obtained generating function S(x) show
the number of words w with a fixed length n that are derived from the start
symbol S of the grammar G = (T, N, S, P).

According to the Chomsky—Schutzenberger enumeration theorem [33], it
is possible to get a functional equation related to a generating function for
a sequence of numbers that are the number of fixed-length words derived
from a given unambiguous context-free grammar. To do this, it is necessary
to represent all production rules for S in the form S — B1|Ba| .. .|Bm, where
S € N and 5; € (NUT)* instead of S — 51,5 — B2,...,5 = B and
perform the following actions:

e replace the sign ’—’ with the sign '=’;

e replace the sign ’|” with the sign '+’ (addition);

e replace the concatenation of terminal and non-terminal symbols with
the sign ’+’ (multiplication);

e replace start symbol S with a generating function S(z), including
all its appearances in each f;;

e replace all other non-terminal symbols in §; with their corresponding
generating functions;

e replace each € terminal symbol in §; with 1;

e replace all other terminal symbols in g; with the variable x;

e repeat the above actions for other non-terminal symbols and their
corresponding production rules.

Thus, based on the production rules of a given unambiguous context-
free grammar G, we can obtain a functional equation for the generating
function S(x).

Therefore, if we find an explicit formula for the coefficients s(n) of the gen-
erating function S(z), then we get an efficient way to calculate the cardi-
nality function of the set of generated words with a fixed length n. The so-
lution of the obtained functional equation allows us to find a closed-form
for the generating function S(x). One of the actively applied techniques in
solving functional equations associated with generating functions and their
coefficients is the use of the Lagrange inversion formula [34]. According to
this formula, if we have a functional equation

(1) Fz) = 2G(F(x)),

where
~ S e, Gla) = gln)a”

n>0 n>0
then, for 0 < k < mn,

n[z"|F(z)* = k[z"F|G (x)".
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In addition, if we use the coefficients of the power of the generating func-
tion

F(x)k = Z f(n, k)z", G(x)k = Zg(m k)z",

n>0 n>0

then we get
k

Thus, if a given functional equation can be transformed to the form (1),
then we can calculate the coefficients of the generating function F'(z) and
its powers through the corresponding coefficients of the generating function
G(x) or vice versa.

At the same time, a methodology based on compositae of generating
functions can be used to find explicit formulas for the coefficients of a gen-
erating function [35]. The composita F?(n,k) of a generating function
F(z), where F(0) # 0, is a coefficients function of its k-th power, i.e.,
FA(n,k) = [2"]F(x)*. According to this methodology, a given generating
function must be decomposed into simpler ones, for which explicit formu-
las for the coefficients of their powers can be easily found. In this case,
we can apply operations on generating functions such as addition, multipli-
cation, composition, reciprocation and compositional inversion. Moreover,
compositae have a generalization to the case of bivariate and multivariate
generating functions [36, 37].

2.2. Description of the proposed method. Using a combination of
the above methods, it is possible to obtain explicit formulas for the co-
efficients of generating functions associated with unambiguous context-free
grammars. In particular, based on the Chomsky—Schutzenberger enumera-
tion theorem, we can obtain a functional equation for the generating func-
tion S(z) associated with a given unambiguous context-free grammar G.
If there is a closed-form solution to the obtained functional equation, then
we can find an explicit formula for the coefficients of S(z) by decomposing
it into simpler generating functions and applying the rules for calculating
compositae. Otherwise, we can transform the obtained functional equation
to the form of the functional equation used in the Lagrange inversion for-
mula. Then we get a formula for calculating the coefficients of S(x) through
the coeflicients of another generating function given by closed-form expres-
sion. Applying the methodology of compositae for this generating function,
we get an explicit formula for the coefficients of S(z).

Next, we describe in steps the proposed method for obtaining coefficients
of generating functions associated with unambiguous context-free grammars.

Step 1. Based on the production rules of a given unambiguous context-
free grammar G = (T, N, S, P), construct functional equations for the gen-
erating functions associated with each non-terminal symbol. The result-
ing system contains functional equations, the number of which is equal to
the number of non-terminal symbols in the grammar G. In addition, the ob-
tained equations can be transformed into the form of multivariable polyno-
mial equations, where the variables are x and all participating generating
functions.
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Step 2. Transform the system of functional equations and get an equation
that includes only one generating function S(z).

Step 3. If s(0) # 0 (it is possible to derive an empty word S =* &),
then make the substitution S(x) = @ in the functional equation. Other-
wise make the substitution S(z) = R(z) in the functional equation. Thus,

the following generating function is obtained:

R(z) = Z r(n)z".
n>0

This requirement is caused by the limitations of the mathematical techniques
used further (the Lagrange inversion formula requires f(0) = 0 for F(x)
in (1)).

Step 4. Obtain an explicit formula for the coefficients r(n) of the gener-
ating function R(z). The following two ways are possible:

Step 4.1. Solve the functional equation with respect to R(x) and obtain
a closed-form for the generating function R(x). Based on the closed-form
solution, find an explicit formula for the coefficients of R(x) (for example,
by applying the methodology of compositae of generating functions).

Step 4.2. Transform the functional equation into one of the following
forms and find an explicit formula for the coefficients of R(x):

e Case 1: if we get H(R(z)) = z, where R(x) = F(x) and

=> fna", H(z)=>» h(n)z", H(@)"=> H2n, k)"

n>0 n>0 n>0
then
1 /2n—1\[n—1+i HAn—1+1,4)

@ o= ) (T e
(3) fn)y==g(n—-1,n)

where .

) =6 = 7] (05

Therefore,

(4) r(n) = [2"]R(z) = [2"]F(z) = f(n);

e Case 2: if we get H(x R(z)) = x, where R(z) = F(x,z) and

n>0m>0

x y) - Z Z h(n,m)x"ym, H(gj’ y)k — Z Z HA(TL,’ITL, k)xnym,

n>0m>0 n>0m>0
then

o = B et
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or
(© Flnm) = —gln,m — 1,m),
where
k
ot ) = a6 = 1) ()
Therefore,
n—1
(7 () = ") R(e) = "] F (@, 2) = 3 flin = i),
=0

Step 5. Obtain an explicit formula for the coefficients s(n) of the gener-
ating function S(z):
e if we have s(0) = 0, then S(z) = R(x) and

(
(8) s(n) =r(n);
e if we have s(0) # 0, then S(z) = R(zr)
(9) s(n) =r(n+1).

Note that the application of this method requires choosing which way
will be used to obtain an explicit formula in Step 4 (Step 4.1 or Step 4.2).
This choice may be based on the complexity of transformations that need
to be performed for a given functional equation. To do this, it is neces-
sary to compare the closed-form solution for the generating function R(x)
with the closed-form expression for the generating function H(z) or with
the closed-form expression for the generating function G(z) = H‘fx). Then

and

it is necessary to select a simpler generating function from them.

Thus, it becomes possible to obtain explicit formulas for calculating values
of s(n), i.e., calculating the number of words with a fixed length n, which
are derived from a given unambiguous context-free grammar G. In contrast
to existing studies that address the problem of enumerating a specific formal
language, the proposed method is a general method and can be applied to
any unambiguous context-free grammar.

The above formula (3) was obtained by using the Lagrange inversion
formula for a functional equation of the following form:

The above formula (6) was obtained by using the Lagrange inversion
formula for a functional equation of the following form:

F(z,y) = yG(z, F(z,y)).

The above formulas (2) and (5) were obtained by applying the methodol-
ogy of compositae of generating functions to the generating functions H(x)
or H(x,y) associated with these functional equations. Next we present
the details of their proof.

Theorem 2.1. For the functional equation

H(F(z)) =,
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where
z) =Y f(n)a", F(x)F =Y F*n, k)"
n>0 n>0
x) = Z h(n)z", H(x)"= Z HA(n, k)z"
n>0 n>0

the following is true:
n—k

k 2n—k\ (n—1+i HAn —k +1,4)
FAn,k) = — )7
(n, k) ng(nH)( i >( S hp
Proof. Let us consider the following functional equation:

F(2) = 2G(F(x)),
=Y g, G@) =3 gln,k)a"

n>0 n>0
According to the Lagrange inversion formula, we have

where

(10) FA(n,k) = fb (n —k,n).
For the case when .
H(z) = @7
we transform the original functional equation to the following form:

Applying the result of Theorem 5 from [36] for the case
Hy(2)G(x) =1,

where
Ha(z) = Hg(f) =S b, Ho(@) =S ha(n, k)"
n>0 n>0
we have
e (RN (k=144 haO(n, i)
Applying
Hao(x) = Hl(f) =S bt =Y b+ 1,k =3 ha(n)a”
n>0 n>0 n>0

(@)k_ZHA(n, => H2n+kk)a"=> ha(n,k)z

n>0 n>0 n>0

and (11) for (10), we get the desired result.
In addition, we have

= ro) =15 (M) (11 e B,
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Theorem 2.2. For the functional equation
H(z, F(z,y)) =y,

where
Flz,y) =YY fn,m)a"y™, F(z,y)*=> > F*n,m,k)z"y™,
n>0m>0 n>0m>0
H(z,y)=>_ > h(n,m)a™y™, H(z,y)* =Y H>n,m,k)a"y",
n>0m>0 n>0m>0

the following is true:

kSN m+2m—k\/m—1+i CH2(n,m — k+1,1)
A i 5 5
F _E -1 - .
(n,m. ) m < m -+ >< i >( ) h(0,1)m+i

Proof. The proof is similar to the proof of Theorem 6 in [36], where the fol-
lowing case of a functional equation was considered:

H(F(Jj,y),y) = Z.

In our case, it is necessary to consider replacing variables z and y with
each other.
0

In addition, we have
f(n,m) = FA(mm, 1) =

_ l% (n+2m— 1) <m— 1—|—i>(_1)iHA(n,m— 141,14)
m = m+1 i h(0,1)m+i '
Note that for y = z, we have
H(z,F(x,z)) =z,
i.e., we get Case 2 of the proposed method.

3. APPLICATION OF THE PROPOSED METHOD

Next, in order to test the proposed method, we show several examples of
finding explicit formulas for calculating the number of words with a fixed
length, which are derived from a given unambiguous context-free grammar.

Example 3.1. Let us consider the following unambiguous context-free gram-
mar:

G=(T,N,S5,P), T={(,),e}, N={S}, P={S—(595)S]|e}.

Table 1 presents examples for several first values of s(n) and the corre-
sponding set of all generated words.

Based on the production rules S — (5)S |e, we obtain the following re-
current formula for calculating the number of words with a fized length n,
which are derived from the grammar:

0 n s odd,
(12) sty =41 n=0;

> s(i) - s(n—2—14) otherwise.
i=0
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TABLE 1. Several first values of s(n) and the corresponding
set of all generated words.

n s(n) Generated words

0 1 €

1 0 —

2 1 ()

3 0 —

4 2 00, (0)

5 0 —

6 5 000, 000), ()0, (0O), (D))

However, using this recurrence formula is inefficient because it has expo-
nential complezity. Next, to obtain an explicit formula, we apply the method
proposed in the article.

Step 1: Based on the production rules S — (S)S |e, we obtain the fol-
lowing functional equation:

(13) S(z) =2%8(x)? + 1.
Step 2: The obtained functional equation includes only one generating
function S(x). Therefore, no additional transformations are required.

Step 3: Since s(0) # 0, we make the substitution S(x) = @ in the func-
tional equation (13) and get

R(x) _ » <R§;)>2+1

T

(14) zR(z)? — R(z) + 2 = 0.

Step 4.1: The closed-form solution for the functional equation (14) with
respect to R(x) is

11 —4a?

(15) R(x) -

=x+23 4225 452" + 142 ... = Zr(n)w"
n>0
Next, we try to find the coefficients r(n) of the generating function R(zx)
based on its closed-form expression (15).
For example, the generating function R(x) can be represent as the follow-
ing composition of generating functions:

(16) R(z) = 2C(A(2)),
where
n_ 1—v1—dx 1 2n
A(z) = Z a(n)z" =22, a(n) =d(n,2).
n>0

In these generating functions, Cy, is the n-th Catalan number and (i, j)
is the Kronecker delta function that equals 1 when i = j and 0 otherwise.
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The composita of the generating function A(x) is
AB(n k) = [2"A(x)* = [2](2?)F = [2"]2?F = 6(n, 2k).

According to the methodology of compositae of generating functions,
the coefficients of R(x) represented as the composition (16) can be calcu-

lated by
n—1 )
ZAA"—lka—Z(Sn—1 2k)C), = Cln-1)/2 ”ZSOdfi,
k=1 1 0 otherwise.
Step 5: Hence, applying (9), we get
0 n is odd,

s(n)=r(n+1)= {

Cpnj2 otherwise.

Next, we consider an alternative way described in the proposed method.
Step 4.2: We transform the functional equation (14) into the following
form:

R(z)
1+ R(z)2
Therefore, we obtain H(R( ) == (C’ase 1) where
=> h(n
112
n>0 1 Tz
To simplify the calculations, we use the following generating function:

G(x)zﬁ:lqtz?

Using the binomial theorem, we derive the following expression for its k-th

power:
Zgnk =(1+2%)* Z()ﬂc]
n>0 7>0 J
This can also be rewritten as follows:

0 n is odd,
1 = k
(17) 9(n. k) ( > otherwise.

n

2
Step 5: Combining (17) with (3), (4) and (9), we obtain the following

formula for calculating values of s(n):

0 n is odd,

1) = 1 1
g(n,n+1) — (n—: ) otherwise.
n

(18) s(n)=r(n+1)=

n+1
2

To experimentally confirm the efficiency of the obtained explicit formulas
over the recurrent one, the evaluation time of calculating the values of s(n)
was measured. We implemented these formulas in the computer algebra
system Mazima on a laptop (Intel i7-9750H, 2.6 GHz, Windows 10, 64 bit).
Figure 1 presents the results of this computational experiment. Here we can
clearly see the exponential increase in computation time for the recurrent
formula and the polynomial increase in computation time for the explicit
formula.
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FIGURE 1. Average time for calculating values of s(n):
(a) based on (12); (b) based on (18).

Example 3.2. Let us consider the following unambiguous context-free gram-
mar:

GZ(T,N7S,P), T:{(a)a[’]vg}a N:{SvM}v
P={S—(S)S|[M]S|e, M — (M|(S)M|[M]M |e}.
Table 2 presents examples for several first values of s(n) and the corre-
sponding set of all generated words.

TABLE 2. Several first values of s(n) and the corresponding
set of all generated words.

n s(n) Generated words

0 1 €

1 0 -

2 2 0, []

3 1 [(]

4 9 00, 00, O, 01, CO), (1D, O [, T((

Step 1: Based on the production rules S — (S)S|[M]S|e, we obtain
the following functional equation:

S(x) = 22S(x)* + 2> M (2)S(z) + 1.

Based on the production rules M — (M |(S)M |[M]M |e, we obtain
the following functional equation:

M(z) = xM(x) + 22S(z) M (x) + 2> M (x)* + 1.

Thus, we have the system of two functional equations with two generating
functions

{S(m) = 225(x)? + 22M (2)S(x) + 1;
M(x) = xM(x) + x2S (x) M (x) + 2? M (z)? + 1.
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Step 2: Next, we transform these functional equations into a single equa-
tion that includes only one generating function S(x):

(19) 238(x)® — (222 + 2)S(x)? + (x +1)S(z) — 1 = 0.

Step 3: Since s(0) # 0, we make the substitution S(zr) = @ in the func-
tional equation (19) and get

z? (M>3—(2x2+x) (@)Z(azﬂ) (@) -1=0

€T
or

(20) zR(z)® — 2z + DR(z)? + (x + 1)R(z) —z =0
Step 4.1: The closed-form solution for the functional equation (20) with
respect to R(x) is
1
V=3-1Y\ [ V232" — 623 + 52 + 2z — 1 N 250 — 32 +3x +2\°
2 2\/2>7m2 5423

=

(VBN (V2327 =623 + B2 £ 20— 1 N 2523 — 302+ 32 +2) 5
2 2\/2773;2 543

2 1 2 1
X(a: + x4+ )+ T+

o " :x+x3+2x5+5x7+14x9+...:Zr(n)x”.

n>0

This closed-form solution was obtained using the computer algebra sys-
tem Maxima. Due to the extreme complexity of the resulting expression,
it is very difficult to obtain an explicit formula for the coefficients r(n) of
the generating function R(x). Next, we consider an alternative way described
in the proposed method.

Step 4.2: We transform the functional equation (20) into the following
form:

R(x)? — R(w)
R(z)? —2R(z)?2+ R(z) — 1
Therefore, we obtain H(R(z)) = x (Case 1), where

2
H(x) = Z h(n)z" =

xr~ —x
n>0

= X.

3 —222 +x—1

To simplify the calculations, we use the following generating function:

3 2
x 2 —22°+x—1 1
G(z) = = = -1 .
(z) H(x) z—1 2@ )+1—.1’
Using the binomial theorem, we derive the following expression for its k-th

power:

k IR k
G()* = 3 atn ke = (ale~ 1)+ 11 ) = (Alw) + Blo) =
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where
Aw) =ale-1), 4300) = "A@)= ") (@ - )" = (B,

it st () ()

B(x) -

According to the methodology of compositae of generating functions,
the coefficients g(n, k) for G(z) = A(z) + B(z) can be calculated by

k

(21) gln, k) =" (j) ZAA(i7j) b(n — i, k — j).

J=0

Step 5: Combining (21) with (3), (4) and (9), we obtain the following
formula for calculating values of s(n):

s(n) = r(n+1) = f(n+1) = nilg(n,nﬂ):
S CTIE )

i=0 i=j

Example 3.3. Let us consider the following unambiguous context-free gram-
mar:

G:(T7N7S’P)7 T:{+7><7(7)7a}7 N:{S’M7E}’
P={S—>S+M|M,M—MxE|E,E—al|(S)}.

Step 1: Based on the production rules S — S + M| M, we obtain the
following functional equation:
(22) S(z) = zS(x)M(z) + M (z).

Based on the production rules M — M x E|T, we obtain the following
functional equation:

Based on the production rules E — a|(S), we obtain the following func-
tional equation:
(24) E(x) =z + 2°S(z).

Thus, we have the system of three functional equations with three gener-

ating functions
S(z) = xS (x)M(x) + M(x);
M(z) =M (z)E(x) + E(x);
E(r) =z + 225(x).

Step 2: Next, we transform these functional equations into a single equa-
tion that includes only one generating function S(x). To do this, we express
M (x) from (23) in terms of E(x) and substitute (24) into the resulting ex-
pression:

E(x) r + 225 ()
T1- zE(x) T 12— x38(x)

(25) M (z)
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Applying (25) to (22), after simplification we obtain the following func-
tional equation that includes only one generating function S(x):

(26) 2238(x)? + (32° — 1)S(x) + = = 0.

Step 3: Since s(0) = 0 (it is not possible to derive an empty word), we
make the substitution S(z) = R(z) in the functional equation (26) and get

(27) 223 R(z)? + (322 — 1)R(z) + 2 = 0.

Step 4.1: The closed-form solution for the functional equation (27) with
respect to R(x) is
_1—-32? —Vat— 622 +1

43

R(z) = o432° +112° +4527 +... = Zr(n)x"
n>0

Suppose that we can not represent the generating function R(z) as a com-
position of simpler ones. Then, we consider an alternative way described in
the proposed method.

Step 4.2: We transform the functional equation (27) into the following
form:

(1 —32?)R(x) — 22°R(x)? = .
Therefore, we obtain H(x, R(x)) = x (Case 2), where
H(z,y) = Z Z h(n,m)z"y™ = (1 — 3x2)y — 2232,
n>0m>0

Using the binomial theorem, we derive the following expression for
the composita of the generating function H(x,y):

Hz,y)h =30 3 HA(nym, k)a™y™ = yH(1 - 32%) — 22%y)F =

n>0m>0

=y (i) (1 — 322)"(—243y)k" =

= 3 (B) (1) o,

n>0m>0

This can also be rewritten as follows:
HA(n, m, k) =

0 —m+ k) is odd,
1 n=m=k%k=0;

k ><2km> n—m+k (2>m—k .
ek | (=3) 2 = otherwise.
<m —k % 3

Step 5: Combining H™(n,m, k) with (5), (7) and (8), we can calculate
the values of s(n).
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4. DISCUSSION

Context-free grammars are one of the possible mathematical tools that
allow generating combinatorial objects in the form of words. In addition,
when working with sets of combinatorial objects, it becomes necessary to
solve problems of enumerative combinatorics. Thus, it is necessary to obtain
a formula that can calculate the number of elements in a given combinatorial
set. The presented study is devoted to solving this problem by finding ex-
plicit formulas for calculating the cardinality function of a combinatorial set.

Generating functions are a widely used tool in the field of enumerative
combinatorics. To solve this problem, it is necessary to construct a generat-
ing function associated with the formal grammar and find an explicit formula
for calculating its coefficients. The following were selected as the main meth-
ods used in this study: the Lagrange inversion formula and compositae of
generating functions.

Thus, the main contribution of this article is the proposed method for
obtaining explicit formulas for calculating the number of words with a fixed
length, which are derived from a given unambiguous context-free grammar.
A unique feature of the proposed method is the combination of methods
based on the Lagrange inversion formula and compositae of generating func-
tions, and their application in the field of context-free grammars. The for-
mulas obtained by using the proposed method can find their application
in solving the problem of developing combinatorial generation algorithms.
For example, to solve practical problems related to data compression (by
encoding information through the use of ranking and unranking algorithms)
or modeling complex discrete structures (by constructing discrete structures
through the use of random generation algorithms). In this case, the pro-
posed method can be applied to calculate the number of discrete structures
in a given combinatorial set.
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