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ON THE ZERO ATTRACTOR OF A SEQUENCE OF TWO
VARIABLES POLYNOMIALS

NOUAR DEGAICHI AND HACENE BELBACHIR

ABSTRACT. The paper investigates the zeros of a family of polynomi-
als in two variables arising from a linear recurrence sequence associated
with binomial coefficient triangle. Using an analytical method based
on conformal mappings, we analyse the attractor of these zeros. This
study provides information on the distribution and behaviour in poly-
nomial families tied to combinatorial structures, offering insights into
their underlying patterns and properties.

1. INTRODUCTION

Through many centuries the zeros of polynomials and their asymptotic
distribution were regarded as significant issues in mathematics. Despite
several studies dealing with different situations and various approaches, the
author’s concentration has always been on one-variable polynomials. For
instance, in [10] He et al considered a sequence of Fibonacci polynomials,
which can be regarded as a sequence of orthogonal polynomials with con-
stant coefficients. Indeed, Fibonacci polynomials are particular class of the
classical Jacobi polynomials studied by Dilcher [7], therefore many informa-
tions on their zeros are available in literature. Among different generaliza-
tions of the classical Fibonacci polynomials, He and Ricci in [9] provide a
weighted generalization of Faber polynomials in complex domain, exploring
their connection to the classical Fibonacci polynomials, and determine the
asymptotic distribution of their zeros. Other more challenging cases of poly-
nomials satisfying either three term recurrence relations with polynomials
coefficients or higher order recurrence relations are thrown in literature. We
quote for instance the case of polynomials satisfying a four-term recurrence
relation [4, 8, 11], see also the references therein.

Since then, Raab ideas are concerned with the directions (1, ¢) in binomial
coefficients triangle for all positive integer q.

In [3], by assimilating the binomial coefficients (Z) to the lattice Z x Z via
the map (n, k) — (}) with the convention (}) =0 for k> n or k < 0, the
authors remarked that the grid (n,0) and the direction (r,q), with r > 2,
r+4q > 0, define the diagonal ray of binomial coefficients triangle containing
the elements

—ak _
U(n, ]f) — n—q mn—P—(q+T)kyp+rk7 k=0,.., n—p 7
p+rk r+q
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where z and y are nonzero real or complex variables. The set of these
rays, when n runs across the set of natural numbers, forms a vector field of
direction (r,q) of binomial coefficients triangle.

The main purpose of this paper the investigate the zeros’ properties of
the following two variables polynomial

(o) [(n—p)/(g+7)] n— gk o)
,4,p _ _ - n—p—(q+r)k, p+rk
v 0= Y U= (i) s

It is worthwhile to mention that the situation of two variables polynomials
is much more complicated, at least for a one reason that the zero attractor,
if it exists, it’s not a point in general but a plane curve. See for instance
[5, 6, 16, 17].

The paper is organized as follows. Section 2, we characterize the zeros of
a bivariate polynomials defined by the terms of a sequence {Uy, (z,¥)},>¢
that satisfies a four term recurrence relation linked to binomial coefficients
triangle with rational generating function with the denominator

D(t) = gu(t) —y*t°,

where g, (t) is a polynomial of degree two, having only one zero of multiplicity
2 at t = 1/x. At the end of the section we plot some special cases in order to
reinforce our conjecture about the zeros of Uy, (x,y) and their distribution
along the algebraic curve Zm (y2 + m3) = 0. Section 3, is devoted to study
the zeros of a particular class of the polynomials defined by the terms of the
sequence satisfying (5) via Cauchy integral representation formula with a
specialization on the curve y? = 3. Section 4 is devoted to describe how we
obtain the zeros by the conformal mappings. While in the last section we
prove that the set of attractor is characterized by the zeros with the same
modulus.

2. STATEMENT OF THE PROBLEM

As mentioned above, the connection between Fibonacci numbers and bi-
nomial coefficients triangle as well as its generalization has been the subject
of several studies. One of them was the work of Belbachir-Komatsu-Szalay
[3] who characterized the linear recurrent sequence associated to rays in bi-
nomial coefficients triangle by assimilating the binomial coefficients (Z) to
the lattice Z x Z via the following map (n, k) — (Z) with the convention
(Z):()fork:>n0rk<0.

Therein, for n € NU{0}, r € N and ¢ € Z with ¢+ r > 0, the diagonal
ray of binomial coefficient triangle was defined by the grid point (n,0) and
the direction (r,q). The diagonal ray of the weighted binomial coefficient
triangle contains the elements

(r.q) — n—qk n—(q+r)k, rk _ n
U\ (n, k) < )7 Yy, k=0,.., Tl

where x and y are real or complex variables.
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For r > 2, the intermediate rays of order p, p = 1,2,...,r — 1, was defined
by

U (map) (n,k) = n—qk gt nkyptrk g DR
p+rk r+q

Also, for a fixed direction (r, ¢), a fixed value of p and the grid point starts
at (n,7), 0 <j <p—1, we consider a sequence with general term given by
the sum of elements laying on the corresponding ray, i.e.

() [(n—p)/(g+r)] n— gk
W) 5= > U <n,k>:Z( +rk)x"‘p—<q+’">kyp+7k,
k=0 k>0 p

with the convention Uy = 0.
Notice that because the sum over empty set is zero, we also have U; =
- = =0 and
P

SN
(2) Uj:<]p )J?J_p_lyp, p+1<j<r+q+p-1.

In that paper, the authors focused on linear recurrence relations associ-
ated to the above sequence. Among other results, they obtained the follow-
ing.

Theorem 2.1. [2] The sequence defined in (1) satisfy the linear recurrence
relation

®) > ot (s =0T

and its generating function is given by [3]

N plran _ YT et
(4) G(t) T Z Un+1 " = (1 _ xt)r _ yrtq+r :
n>0

Our main goal in the present paper is to investigate the bivariate polyno-
mial’s zeros defined by (1) as well as their limiting behaviour. For instance,
we shall focus our work on the special case r = 2, ¢ = 1 and p = 1 known
in the literature as the direction (2,1) in binomial coefficients triangle. Its
worthy to notice that the case p = 0 represents the principal direction, i.e.
the summation starts from the first column.

To the best of our knowledge, all the previous studies are concerned with
the simplest case r = 1. In this contribution, we shall focus on the case
r > 1. Besides, the latter cases generate new situations according to the
principal array and its intermediate arrays, it is given by the recurrence
relation

(‘5) Up=22Up_1 — -TZUn—2 + yZUn—Ba n >3,

with Uy = Uy =0, Uz = y and generating function [3]

— 2L1)n _ yt
Gt) =D Unn"t" = g s~y
n>0

2
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In this case, the relation (1) becomes

[n—1/3]
(2.1,1) _ (2,1,1) _ n—=Fk\ n-1-3k 142
Ui e = 3 U e =3 (H% g iy L2k,

The Figure 1 shows the direction (r,q,p) = (2,1,1). Notice that the red
colors corresponding to the standard case p = 0. In the triplet (r,q,p),
the first component p represents the pitch between two successive elements,
second the ¢ indicates the direction (up or down), while the p specifies the
starting point, i.e. the corresponding column.

The following table gives the first few terms of the sequence defined by

Q)

Uy=U; =0 0
Us =y 1
Us = 2xy 2
Uy = 322y 3
Us :y(41:3+y2) 5
Us = zy (5x3 + 4y2) 9
Ur = 22y (6373 + 10y2) 16
Us =y (2023y? + 725 + ) 28
Ug = zy (Z’)&’)z?’y2 + 8z + 6y4) 49
Uro = 22y (5623y? 4 926 4 21y*) 86
The first few terms of the sequence The sum of the coefficients

The sum of the coefficients is cited in OEIS A005314 [15].
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Uy = oy (180" + 68007 + 436"y + 64350%)P + 20022%° +78y")
Ui =y (1725 4 3002524 3080y + 34320 4 16?4+ 1941)

| U=y 1625+ 850+ 0 4 1 + 20 1)
) U=ty (l5a™+ 36"y + I8N + TR 450 \‘
331 Us=1y (14:6”+286x9y2+792x6y4+330x3y6+Lﬂyg) \\\ | }‘
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Ficure 1. Mustration of vector feld through the direction (r,g,p) = (2,1,1)
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From another hand, it is well known that the zeros of polynomials depend
on their coefficients, thus as a bonus from the above table, we merely deduce
the following

Theorem 2.2. The coefficients of the polynomials defined by the terms of
sequence {U,(jlll’l) (z,y)} o given by (1) satisfy the following four term
nz

recurrence Telation
(6) Unpz3 =2Un42 —Upi1 +Un, Up=U1=0, Us=1

with generating function

t

= ————————.
1) 1—-2t+t2 -3

Furthermore, the sequence {Up},~ defined by the relation (6) is not log-
concave. B

Indeed, the third coefficient squared is less than the second times the
fourth coefficients, i.e. 3 x 3 < 2 x 5 provides a counterexample.
Now, let us recall the following

Definition 2.3. ([18]) We say that a recurrence sequence is simply periodic
if it is periodic and that it returns to its first term.

2r —x2 o
The determinant of the companion matrix A = 1 0 0 of
0 1 0

(5) equal y?, and then it’s a nonzero determinant, which asserts that this
sequence is simply periodic. Therefore, by using the periodicity we merely
deduce that

(7 Un = yP, (2%, 9%) 2" mod [3]

where P, are a bivariate polynomials in the variables 2% and y2.

Let us denote by Z(U;) the set of zeros of the bivariate polynomials de-
fined in terms of {Up}, . Motivated by some experimental investigations,
we conjecture the following

Conjecture 2.4. (1) The zero attractor of Z(U;) is characterized by
Im (y2 + x?’) =0.
(2) The zeros are distributed along the curve Im (y2 + :v?’) =0.
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Real Parts for U[11]

UW '

Re(y)

3.x10715

2.x10715

1.x10715

-1.x10715

-2.x10715

-3.x10715

1

Imaginary Parts for U[11]

Im(y)

Ficure 2. U[11]
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Real Parts for U[12]

Imaginary Parts for U[12]

Im(y)

Ficure 3. U[12]
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Real Parts for U[13]

Re(y)

4.x10716

2.x10716

-2.x10"16

-4.x10716

Imaginary Parts for U[13]
Im(y)

FIGURE 4. U[13]

3. INTEGRAL REPRESENTATION

In this section, we shall mimic the idea of Ricci [8] in order to analyze
the limiting behavior of the zeros of specific class of polynomials associated
with the (2,1,1) direction in binomial coefficients triangle, restricting to
the case of polynomials in one variable, using Cauchy theory and conformal

mappings. For this end, we shall specify the case y?> = 23. Now using
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Cauchy integral formula, the polynomial sequence U, (x,y) defined by (5)
has the following representation.

Lemma 3.1. For any x,y nonzero real or complex parameters there exists
a non negative real number py, > 0 such that

(®) Un (2,9) = — f v

21 (1 —axt)2 — 23 0
[t=pa.y

Proof. Since 53 — y for t — 0 then we can find p;, > 0 such

(1*@‘5)1/2*_?/
that |(1—at)? —y?t3| > 1 for [t| = pyy. Hence the integral (8) is well-
defined.

Let us consider the integral

~ 1 y dt
U, =— S
n(@9) 2mi % (1 —xt)2 —y2t3¢n
|t‘=pz,y

We can directly verify that U, (z,y) satisfies (5) for n > 0. Next, since the
Taylor expansion of W =y+2zyt+0 (t2), by residue Theorem we
have U (z,y) =0, U (z,y) =0 and Uy (x,y) = y. Hence the initial values
in (2) are satisfied, thus the integral representation U, (z,y) is a solution to
the recurrence (3) and since the solution of the linear recurrence sequence is
unique, then U, (z,y) = U, (z,y). The uniqueness of the solution completes

the proof of Lemma 3.1. (]
Under the specialization y2 = 22, the Equation (8) gives
1 y dt
9 U = — T —————— e —
) n(@y) =355 f (1—xt)2 — 23 n
[t|=pa,y
_ (zy/x) j{ 1 dt
T 2mi (1 —xt)2 — 233 ¢
M:Pm

The latter equation becomes, after replacing ¢ by ¢/ in the Equation (9),

U (@.9) —gnts ?{ 1 dt  —a"t2 7{ 1 dt
T = _ == i
n Y= Ton B2t 2 P{t)

lt1=pe [t=pa

where
(10) P(t)=t3—(t—1)%
Next, we shall denote by

(11) (@) 1= —L ]f Lot

2mi P(t)tn’
[t|=pa
also from Lemma 3.1
(12) wa(@) = o~ (2T, (2,y)
accordingly, the zeros of U, (z,y) could be obtained from those of wy(z)

1
n+3

after multiplying by «
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Lemma 3.2. (a) The polynomial P(t) defined in (10) has no zero of
order 3. ‘ ‘
(b) P(t) has zero of order 2 if and only if t; = 1_;)\/5 orty = %

Proof. (1) The derivative polynomial P’(t) has no zeros of order 2, conse-
quently P(t) has no zero of order 3.

(2) P'(t) has two complex zeros of order 1, t; = 1%‘/5 and to = 1%‘/5,
and in this case the zeros of P(t) are: % + i@, % + i%, -1 - z@ when
t = to, and when ¢ = ¢; the zeros of P(t) are: %—ié, é—i%, %—zé a

Let t1,to,t3 be the zeros of P(t) arranged via their magnitudes, i.e.
(13) [t < [t2] < [t],

P(t) has distinct zeros if t # t1 and t # to. Therefore, after developing the
partial fraction decomposition for #t), we obtain
1 1 1 1 1 1 1
- T + :
P(t) P (t)t—t;  Plta)t—ty P (t3)t—t3

Using Equation (11), the integration term by term and using the residue

Theorem, we get

1 1 1
= + +
P(t) ;™" Pttt P'(ta) 2y
According to (14), it’s clear that the asymptotic behavior of wy,(z) depends
on the magnitude of the zeros of P (t) = 0.

(14) wn ()

4. CONFORMAL MAPPINGS

In the present section, we describe how the zeros of P(t) can be obtained
by a sequence of conformal mappings.
Set t = z + %, then P(t) = 0 returns to its canonical form:

5 11
15 34— —=-=0
(15) ST
Moreover, for z = A\qg with A = %, we have
(16) ¢ =3¢+ =0,
with
—11v/5i
17 = —.
(a7) b=

It is clear that 8 is not conformal. On the other hand, for ¢ = p + %,
Equation (16) in p is

(18) P’ +Bp®+1=0.
Equivalently for p3 = s, we get
(19) s+ Bs+1=0,

which implies

(20) Bz—(s—i—l)‘
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Now, it is clear how to obtain the zeros of P(t) by going through a se-
quence of conformal mappings starting from the S-plane and subsequently
ending in the t-plane .

The map : J(¢) =(+ % is called Joukowski map [13], it is conformal in
the regions |¢] < 1 and |¢| > 1.

The [-plane is mapped into the exterior region to the unit circle in the
s-plane under J~1(—p), the region is mapped into the exterior region to the
unit circle in the p—plane under p = $173.

Remark 4.1. The map p = s/ is multiple-valued.

Then, according to ¢ = J (p), z = %q andt = z+ %, we recover the zeros
of P (t) in the p-plane and finally ¢ to t/x in the z-plane. We can express
this situation symbolically as

C\’(ﬁ)—ﬁl/\s—) P’=s a=p+1/p
[-plane 7| s-plane [ 7| p-plane q-plane
A) A)

N

z=Aq

~

_ x-plane [ t-plane[ 7 z-plane
y2 = 43

t—t/x t=2z+4+1/3

FIGURE 5. Description Diagram

As Joukowski map: J(¢) = C—&—% is conformal on |¢| < 1 and |{| > 1. Let
us focus on || > 1. We have the following result

Theorem 4.2. The Joukowski conformal mapping J(() maps circles onto
ellipses and the straight lines onto hyperbolas.

Proof. Considering the complex ¢ plane (for |¢| > 1), put ¢ = Rexp{if}, so
that for R = const, the circle ( = Rexp{if} comes out.

J(¢) = Rexp{if} + R~ exp{—if}
=(R+ R Ycosf +i(R— R Y)siné.
The ellipses come by setting u = (R + R™!)cosf and v = (R — R~!)sin.
Therefore, we obtain the following equation of the ellipse
W?/(R+ R ') +0*/(R-R')? =1,

whose semi-axis are a = (R+R™') and b = |R—R™!|. Since a®?—b% = ¢ = 4,
the foci are in points ¢ = 2 and ¢ = —2.
For 8 = —T = const (straight lines), put ¢ = Rexp{—iT}.

J(¢) = Rexp{—iT} + R~ exp{iT}
=(R+R YcosT —i(R— R Y)sinT.
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The hyperbolas (transformation of straight lines) come by setting u =
(R+R '} cosT,v=(R—R YsinT, ie.
W¥/(R+R™H? —v?/(R-R )2 =1
a
4.1. Zero analysis and structure in the p-plane. Recall that t;,1s,t3

are the zeros of P(t) = 0 such that they satisfy (10). In this subsection, we
will study the set A defined by:

(21) A = {[t1 (z)] = [t2 (2)]}-
To represent the set A in the x—plane, it is better to represent the set of
points in the p—plane that leads to |t (z)| = |t2 (z)| as shown in Figure 5.

q=J(p) = Rexp (i) + R~  exp (—if)
= (R + Ril) cosf +i (R — Rfl) sin @,
iv/5 Vb

2= = — 3 (R+R )cosG—i—T(—R—l—R*l)SinH
and
t:z+% "/—(R+R )cose+§(fR+R71)sin9+%.
Then
V5 . 2 VB 2
|t2’ = <? (—R+ Ril) sinf + §> + <? (R—I—Pfl) cos 9)
:S(RQ+R*2)+§C 29+9+£( — R) siné.

Now let Rexp(ihy), Rexp(i (6o + 2”)) and Rexp(i (6o + 4“)) be the im-
ages of a point = in the P—plane.

For example, we may assume that Rexp(ify) leads to ¢; in the t—plane
and Rexp(i (6o + 4?’T)) leads to tg .

Thus ‘tﬂ = ’t%‘ implies

1 2
g(R2+R’ )+§0c05290+9+7‘/—( — R)sinfy

5 10 4 1
= (R*+R %)+ —cos2 (6 =
9( + )+9COS (0+3>+9
2v5 4
+£(R’1—R)sin O+ — | .
9 3
Then we get after simplification:
10 4
9 [COSQGO — cos 2 (90 + §>}

_ 29@ (R - R) {f sin fy + sin <90 + %”)] .

Using the trigonometric identity

cos 2a — cos 2b = —2(sina — sin b)(sina + sin b)

293
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(22) - (R—1 - R) {2 sin %ﬂ cos (00 + %ﬂ)}

2 2 2 2 2
= 90 {2s1n§cos <90+?ﬂ'>} |:2COS§Sin <00+§>}

Two cases to discuss

The first one is: if cos (00 + {) = 0 this implies that 6y = =" or 0y = _77”,
then any R > 1 satisfies (22).

The second one is: if co% (0 ) # 0, then we get, after cancelling the
common factor, cos (6’0 + ) leads to

NG 10 . 27
?(R _R)_§Mn<00+3>

which is equivalent to the rectangular equation

\/ﬁ 2 \/5 2

We summarize the previous discussions in the following Lemma.

Lemma 4.3. Let t1 = Rexp{ibp} and to =
Rexp{iGo—l—%”} be two zeros of the polynomial o S
P(t) (10). In the p-plane, the above complex 2 e
numbers have the same magnitude if one of
the following conditions is satisfied
(&) m = Rexp{—iﬁ} or p1 =
Rexp{—iT*} for all R > 1.
(b) p1 lies in the circular arc of the circle
in the region R > 1.

Notice that po is the image of p; by the rotation of angle 4.—”

The condition |¢;| < |t3] is needed to make sure that |t1\ < |ta] < |ts].
Recall that t3 corresponds to Rexp (z (90 + %’T) ) in the p—plane, since

|t1] < |t3| this implies, |¢1]* < |t3]? then we have

29£ (R - R) {2 sin (%”) cos (0 + g)}
> 2 fzsin () os (0 )] [2n (0 ) eos ()]

To solve this inequality, we have two cases to discuss:
1- If cos (90 + %) > 0, which is equivalent to
—om m
23 — < by < —.
(23 Tyt
Then after cancelling cos (00 + %), we get

28

(R - R) < _Tmsin(ﬂo-i-ﬁ),
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or, in rectangular form,

2 2
V15 5
(24) (m + —) + (y - £> > 6.
2 2
The corresponding region in this case follows, after combining (23) and
(24), namely

2 2
1 _
(25) <x+—”25> +<y—§> >6, R>1, and%<00<%.

2- If cos (00 + %’r) < 0 this is equivalent to:

T<o <7—7r
6 "6
and we have to solve
2v/5 —-10
T\/i(Ril—R)>TSIH(90+g)

2 52
In a similar way, we get the region for the (90 + T) + (y - 7) <6.
case 2:

(26) R>1 and%<90<%r.

Let the region I'y and the region I'y corresponding to (25) and (26), re-
spectively. Then
'y UTy = {points in p — plane that correspond to |t1| < |t3|}.

Now, imposing the condition stated in Lemma 4.3, we get the point set
C1 of the point p; that corresponds to root ¢;.
Explicitly, Cy is the point set defined as

Cy={I'1ulin {ray:@:%}u (I—’_g) +<y_§> i

Similarly, we defined C5 as the rotation of C; through an angle of %’r and
C5 through a rotation of angle 2%

It is clear that Cy consists of points in the p—plane that corresponds to
to and C3 corresponds to t3. Thus we have proved the following

Theorem 4.4. The condition for the points in the p—plane for which |t1| =
|t2| < ‘t3| s i € Ci; fOT‘i = 1,2,3.

5. Zero attractor

The concept of attractors was introduced in 1964 by Auslander et al. [1],
it plays an important role mainly in dynamical systems [12].

295
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Definition 5.1. Let {gn(x)},~ be a sequence of polynomials, where the
degree of qn(z) increases to infinity as n — oco.

A set A in the x—plane is called the asymptotic zero attractor of zeros of
{gn(2)},,5¢ if the following two conditions holds:

(1) Let Ac = UgeaB(x,€) where B(x,€) is the open disc centered at x
with radius €, Ae is a neighborhood of A, there exists no(e) such that for all
n > ng all the zeros of qn(x) are in A..

(2) For allx € A, for all e > 0, there exists n1(x,e) € N and a zero r of
{gn, (®)},,~0 such that r € B(z,¢).

Let Z (wy,) denoted the zero attractor of wy, ().
To see the zero attractor of U, (z,y), by using (12) we have wy(z) =

J:f(%Jr”)Un (x,y).

1
Assume z9 € Z (wy,) again by Equation (12) wy,(z¢) = asg(§+n
3

where yo = 2. Since wy(20) = 0, we get Uy, (20, y0) = 0. Hence x,
Z (Uy).

Let C be the curve defined by {The z values for which |¢1| = [t2].}.

For all € > 0, let C. be the e— neighborhood of C in the x—plane.

Now we will give a justification that, for all large n, all the zeros of wy ()
are contained in C-.

According to 13 the asymptotics of wy,(x) depends on the magnitudes of
the zeros of P (t) = 0.

Let B = {z € x —plane : |t; (z)| < |t2(x)|}. Obviously, B is an open
region in the x—plane. Then we have

)Un (w0, v0)
1
2

Lemma 5.2. There exists a non negative real number p such that for all
large n, the zeros of wy(x) are contained in the disc D, = {x : |z| < p}.

Proof. According to Lemma 4, the zeros of P(t) = 0 excluding ¢t # #
are simple and consist of one real zero ¢, and two complex conjugate zeros,
Cz and C37 with |C1| < Kzl

Since ¢, and ¢, have the same magnitude their choice is arbitrary.

Let P'(t) = 3t> — 2t + 2 be the derivative polynomial of P (t). Define
¢, = pexpia and ¢, = ¢, where the bar denotes the complex conjugate.

We then compute

2
P =3(a-3) +5

2
P(e) =3 (newlio) - ) +5

P'(¢,)=3 <uexp(—ia) - %)2 + g

Using Equation (14) and we take the modulus, we drive the following

estimate
P%g)<g>”” P%g><g)"*
Yeg\e) T\

>0,

fen(oll = |

1
PGt




On the zero attractor of a sequence of two variables polynomials

for all sufficiently large n.
This establishes the result and completes the proof of the lemma. a

The following lemma can be used to determine the location of the zeros
of P(t) =0.

Lemma 5.3. Let L be a compact set of B, then P'(¢,) (" twp(z) — 1
uniformly for oll x € L as n — oo.

Proof. Using Lemma 5.2, if x € L, then P(t) has only simple zeros with
P'(¢), fori=1,2,3.

Since L is a compact set, this implies 0 < m < ‘P’((i)‘ < M uniformly
forz e L andi=1,2,3.

Using again Equation 14, we get

G|t

P(¢) (T lwn(a) = [1+0

3

where the small o terms approach zero uniformly. This confirms our result
and completes the proof of the lemma. |

From the results of the previous Lemma, we conclude the following

Corollary 5.4. The set B has no zeros of wy(x), all the zeros of wy(x) are
belong to Ce.

CONFLICT OF INTEREST

The authors have no relevant financial or non-financial interests to dis-
close.

DATA SETS

There is no data sets available.

REFERENCES

[1] J. Auslander, N.P. Bhatia, P. Seibert, Attractors in dynamical systems. Bol. Soc.
Mat. Mex. 9 (1964), 55-66.

[2] H. Belbachir, T. Komatsu, L. Szalay, Characterization of linear recurrences associated
to rays in Pascal’s triangle. In: Diophantine analysis and related fields 2010. AIP
Conf. Proc., 1264, Amer. Inst. Phys., Melville, NY, 2010, pp. 90-99.

[3] H. Belbachir, T. Komatsu, L. Szalay, Linear recurrences associated to rays in Pascal’s
triangle and combinatorial identities, Math. Slovaca 64 (2014), 287-300.

[4] V. Botta, E. F. Filho, On polynomials generated by a four-term recurrence relation
and linear coefficients, Calcolo (2023), 60:33.

[5] R. Boyer, W.M.Y. Goh, Polynomials associated with partitions: asymptotics and
zeros, Special functions and orthogonal polynomials, 33-45, Contemp. Math., 471,
Amer. Math. Soc., Providence, RI, 2008.

[6] R. Boyer, W.M.Y. Goh, Appell polynomials and their zero attractors, Gems in exper-
imental mathematics, 69-96, Contemp. Math., 517, Amer. Math. Soc., Providence,
RI, 2010.

[7] K. Dilcher, A Generalization of Fibonacci Polynomials and a Representation of
Gegenbauer Polynomials of Integer Order, Fibonacci Quart. 25:4 (1987), 300-3003.

[8] W. Goh, M.X. He, P.E. Ricci, On the universal zero attractor of the Tribonacci-related
polynomials. Calcolo 46 (2009), 95-129.

297



298 Nouar Degaichi and Hacéne Belbachir

[9] M. He, P.E. Ricci, Asymptotic distribution of the zeros of weighted Fibonacci poly-

nomials, Complex Var. 28 (1996), 375-384.

[10] M.X. He, P.E. Ricci, D. Simon, Numerical results on the zeros of generalized Fi-
bonacci polynomials. Calcolo 34 (1997), 25-40.

[11] J. Luong, K. Tran, Zeros of a table of polynomials satisfying a four-term contiguous
relation, Z. Anal. Anwend. 41 (2022), no. 1/2, 81-91.

[12] J. Milnor, On the Concept of Attractor, Commun. Math. Phys. 99,177-195 (1985).

[13] Z. Nehari, Conformal mappings (McGraw-Hill, New York, 1952).

[14] J.A. Raab, A generalization of the connection between the Fibonacci sequence and
Pascal’s Triangle, The Fibonacci Quart. 1(3) (1963), 21-31.

[15] N.J.A. Sloane, The on-line encyclopedia of integer sequences, The On-Line Encyclo-
pedia of Integer Sequences

[16] K. Tran, The root distribution of polynomials with a three-term recurrence, J. Math.
Anal. Appl. 421 (2015), 878-892.

[17] K. Tran, Connections between discriminants and the root distribution of polynomials
with rational generating function, J. Math. Anal. Appl. 410 (2014), 330-340.

[18] A. Vince, Period of a linear recurrence, Acta Arith. 39 (1981), 303-311.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEBESSA, 12002, TEBESSA, ALGE-
RIA

USTHB/FAcULTY OF MATHEMATICS, RECITS LABORATORY, Po. Box 32, EL ALIA,
BaB EZZOUAR, 16111, ALGIERS, ALGERIA
Email address: ndegaichi@usthb.dz,nouar.degaichi@univ-tebessa.dz

USTHB/FAcULTY OF MATHEMATICS, RECITS LABORATORY, Po. Box 32, EL ALIA,
BaB EZZOUAR, 16111, ALGIERS, ALGERIA
Email address: hacenebelbachir@gmail.com, hbelbachir@usthb.dz



