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TIME-CHANGED CONVOLUTED POISSON PROCESS

ASHOK KUMAR PATHAK

ABSTRACT. In this article, we study the time-changed convoluted Poisson process (TCPP) which is obtained
by time-changing the convoluted Poisson process (CPP) by Lévy subordinator. We derive distributional
properties of the TCPP, such as, the probability mass function, probability generating function, moments
and covariance. We study the asymptotic behaviour of the correlation function which proves the long-
memory in the considered process. We also present a compound Poisson representation of the TCPP. We
define the convoluted negative binomial process (CNBP) by time-changing the CPP with an independent
gamma subordinators. We derive the governing differential equation of the CNBP and studied its dependence
behavior. The Lévy measure density of the CNBP is also derived. Finally, we explore some other important

examples of the TCPP and their connection with the fractional differential equations.

1. INTRODUCTION

Poisson processes with fluctuating intensities find widespread application in diverse fields. For instance,
they are employed in telecommunications (see [17]) to depict varying call arrivals throughout the day, in
biological systems (see [19]) to represent changing neuron firing rates, and in numerous dynamic systems
across various domains. It would be interesting to study the probabilistic models for the Poisson process with
varying intensity. In this direction, [9] and [24], defined the convoluted fractional Poisson process and the
convoluted fractional Poisson process of order k, respectively. The need for generalized models in convoluted
Poisson processes arises from the diverse range of real-world phenomena they describe, requiring flexible

frameworks that can accommodate varying intensities, time dependencies, and complex event patterns.

The method of subordination (see [6]) has garnered notable interest in methods of creating new stochastic
processes (see also [23] for subordinated stochastic processes). It involves substituting the time component of
the original process with an independent stochastic process, preferably characterized by non-decreasing sam-
ple paths. In this paper, we study the convoluted Poisson process (CPP) time-changed by Lévy subordinator
and its inverse as time-changing the CPP will give flexibility to the count models studied in the literature and
it will also help generalize the existing theoretical results. In this article, we introduce time-changed convo-
luted Poisson process (TCPP) and study its several distributional properties, such as, the probability mass
function, probability generating function, mean and second order properties. Using the asymptotic behavior
of the correlation function we show that the TCPP has long range dependence (LRD) property. We also

present its compound Poisson representation and work out several special cases of the TCPP which includes
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convoluted negative binomial process, convoluted Poisson process with tempered-stable inverse Gaussian,
Mittag-Leffler and multistable subordinator time changes. Additionally, some non Lévy process such as
inverse tempered stable and inverse of inverse Gaussian are used to time-change the CPP. The governing

differential equations and Lévy measures are also derived in several special cases.

The paper is organized as follows. Section 2 contains some preliminary results which are required for the
rest of the paper. In Section 3, we introduce and present results related to the TCPP. We define the CNBP
and discuss its various important characteristics in Section 4. Finally, we explore some special time-changed

variants of the TCPP in Section 5.

2. PRELIMINARIES

In this section, we establish the notations and definitions that will be referenced in the subsequent sections.
The set of natural numbers is denoted byN, while the set of non-negative integers is represented as Ny =

NU {0}. We use R to denote the set of real numbers and C to represent the set of complex numbers.

2.1. Definitions.
(i) Let f and g be two real-valued functions with support from the set of integers. The discrete convolution

of the function f and g is defined as (see [8])

(f+g)(n Zf(z n—1)

i=—00

satisfying > oo | f(i)] < co and Y oo |g(i)] < oc.
(ii) The shift operator denoted by e=*% for K € R is given by (see [2])

(cro
e f() Zf R )

(iif) Three parameters Mittag-LefHler function L§ . () is defined as (see [20], [21])

o z T(a+k)
)= ; KT (v + k) T(a)

, B,7,0,z € Cand Re(B) > 0,Re(y) > 0,Re(a) > 0.
(iv) The generalized Wright function is defined by ([11])

5 < T
z (@6 Bid1p 722_ T 1 [oi + Bik) z,a;,a; € Cand B, b; € R.

W _
o (aj,6j)1,4 k=0 k! HJ 1 T(aj +b; k)’

(v) For 0 < 7 < 1, the Caputo fractional derivative of order 7 is defined as (see [20])

1

IO = sy [ (=07 i
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2.2. Lévy Subordinators.
Let {S¢(t)}t>0 with S¢(0) = 0 be a Lévy subordinator with Bernstein function f whose sample path are
non-decreasing. Then, the Laplace trandsform of S¢(t) is given by

(1) E (e_“sf(t)> = e_tf(“)7 u >0,

where
flu) =bu +/ (1—e™) p(dz), b>0.
0

Here b denotes the drift and u is a non-negative Lévy measure satisfying p ([0, 00]) = oo and fooc min(z, 1)u(dx) <

Q.

2.2.1. Gamma Process. Let > 0, p > 0, and {I'(t)}+>0 be a gamma process, where I'(t) ~ G(u, pt), which

1

denotes the gamma distribution with scale parameter = and shape parameter pt. Its probability density

function (pdf) is given by

(2) fo(z,t) = 'u—m:r”t_le_’“" x> 0.
© T(pt) ’
The fractional order moment of the gamma process is given by
T(pt +1)
3 E[TYt)] = ——=—, >0

For z,t > 0, the pmf in (2) satisfies the following cauchy system (see [2])
@ e H folant) = L ol ) + fola,)
G\, ) = M dz G\&L, G\&Ly ),
with fa(2,0) = d(x) and lim;|—00 fo(2,t) = 0 and §(z) is the Dirac delta function.

2.2.2. Convoluted Poisson Process. Kataria [10] introduced the convoluted Poisson process (CPP) denoted
by {N€¢(t)}i>0 by verying intensity as a function of states with the help of the discrete convolution. Let
{Ai,i € Z} is a sequence of intensity parameters such that A; = 0 for all ¢ < 0 and A\; > A\j41 > 0 foralli >0
with Y77 (Ai—1 — A;) = 0. The probability mass function (pmf) of the CPP is given by

ef)‘ot7 if n =0,

6 pi(n0) = o

SO RITAE A et s,

k=1 Ak =1 ‘

where Alfl = {(kl,kz, .. .,kn) : E?:l kj = k,z:b:ljkj =k, k‘j € No}

The pmf in (5) satisfies the following fractional stochastic differential equation of the form (see [10])

d C C C
Epi(nv t) = —An * pi(n,t) + Ap1 *pi(n — 1,1)

n

(6) = —op§(n, 1) + Y (Nic1 = A)pi(n — i t).

i=1
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2.3. Convoluted Fractional Poisson Process.

Kataria [10] introduced the convoluted fractional Poisson process (CFPP) denoted by {N§(t)}:>0 by varying
intensity as a function of states with the help of the discrete convolution. Let {)\;,i € Z} is a sequence of
intensity parameters such that A; = 0 for all i < 0 and A; > A1 > 0 for all ¢ > 0 with >0 (Ai—1 — A;) = 0.
The probability mass function (pmf) of the CFPP is given by

L1 (—=ot?), if n=0,

(7) pa(n,t) =

n

S T Qi = A0 s e Not?), ifn>1
ZZ HT ﬁ,k/3+1(_ ot”), itn>1,

k=1 Ak i=1
where AF = {(k1, ko, ... . kn) : > i kj =k, > r, jkj =k, k;j € No}. The pmf in (7) satisfies the following
fractional stochastic differential equation (see [10])
(8) E?tﬂpg(mt) ==X % p5(n,t) + An1 xpg(n — 1,t), n >0,
with initial conditions

. 1 ifn=0,
9) p(n,0) = :
0 ifn>1,

For 5 =1, (8) reduces the differential equation for the convoluted Poisson process {Nf(¢)}i>o of the form

(see [10])

d
apf(n, t) = =X xpi(n,t) + A1 xp(n —1,t)

(10) == Xop§(n.t) + Y (A1 — A)p§(n — i t).

i=1

3. TiME-CHANGED CONVOLUTED POISSON PROCESS

We introduce the time-changed convoluted Poisson process (TCPP) by time changing in convoluted Poisson

process (CFPP) with an independent Lévy subordinator as
(11) N§(t) = N°(S¢(t)),t > 0.

Let hg(x,t) be the pdf for the Lévy subordinator. Then, with the help of (5), the pmf for the TCPP is

derived as

45(n.1) = PING(t) = n} = / " P by . t)dy

> (> (“hoy)’ I
/0 (2_;) TG+ 1)> hy(y, t)dy, if n =0,

¢ S (imr = Ak k (= Moy)’ .
/0 I ki : sy (Z( i?y)>hf(y’t)dy7 ifnz1,

k=1 Ak i=1 i=0
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M I .
Zr(i+1) VR, )dy, if n =0,
1=0

n n o0 )\ ; )
ZZ’“'H lek+1 Z O / y D hy(y, t)dy, ifn>1,
k=1 Ak i=1 i=

Z [J’Jrl f()] if n =0,

=0

At Eoo —o)’ i .
kzz H k'FkJri) ( i!o)IE[SI;_"(L‘)}7 ifn>1,
Ak

=1 1=0

Ee 205 (1), ifn=0,

(12) -

n n

. )k
ZZI@!H%E Sk(tye 2SO if > 1,

k=1 Ak i=1

Considering (12) and using the results for exponential functions as a special case of the Mittag-Leffler
function and the definition of the Bell polynomials encountered in Beghin [4] and Comtet [7, pp. 133-137],

respectively, we may note that

qu(nt Ot-‘qufnt

,Ans,(t)JrZZZk,H - ,\.)kiE [S,;(t)e,xosf(t)]

n=1k=1 Ak i=1

n

:Ee_xosf(t)_i_i]E[Sz; —)\OSf(t)] izk'l—[ i 1—>\-)k1

k=1 n=k Ak i=1
i V'E [Sf(He 51 O] =Ef) = 1.
k=0

Remark 3.1. Let Ty be first passage time distribution of the TCPP. Then, we have

(13) P{Ty >t} = P{N§(t) = 0} = Ee %) ¢ >0,

which coincides with the Laplace transform of the subordinator with Bernstein function f.
Next, we obtain the probability generating function (pgf) of the TCPP.

Theorem 3.1. The pgf of the TCPP is given by

(14) H(u,t) = exp <tf (Z((A“ - )\i))ui)>

=0
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Proof. 1t is known that the pgf of CPP have the following form ([10])

(15) G%(u,t) = exp (i w (N1 — )\i)t) .

=0
We consider the formula
(16) H(.0) = [ Gy .00y
(17) = /O°° (eXP (iui()\il - )\i)y>> by (y, t)dy

i=0

(18) =E [exp (Sf(t) iui(/\i,l - )\Z)>] .

i=0
Since S¢(t) is a subordinator, therefore following the definition (1), we get the result. O

Remark 3.2. It may be noted that the moment generating function (mgf) for the TCPP can be obtained
through (14) and is given by

(19) M (u,t) = exp (—tf <Z((>\i1 - )\i))e“)) .

=0

In the following theorem, we derive the formula for the mean, variance and the autocovariance of the TCPP.

Theorem 3.2. For 0 < s <t < oo, the mean, variance and autocovariance of the TCPP are given by
(i) E[N5(8)] = RE /(1))

(ii) Var[N§(t)] = R*Var[Sy(t)] + (R + 2S)E [Sf(t)] -

(iii) Cov[N§(s), N¢(t)] = R*Var[S¢(s)] + (R + 25)E[Sy(s)],

where R="3 0 X and S =3 oo, i);.

Proof. The mean and variance of the CPP are given by (see [10])

(20) E[N°(5) = Rt,

(21) Var [N¢(t)] = (R + 29)t,

respectively. Using (20), we get

(22) E[NF(®)] = E[E[N(S;()[S;(0)]] = E[RSf(t)] = RE[Sf(1)]-

Now, we compute the variance function for the TCPP as

(23) Var[N§(t)] = Var [E[N°(S¢(£))[S¢ ()] + E [Var[N“(S¢(2))S¢(2)]]
(24) = Var [RS;(t)] + E[(R + 25)S;(1)]
(25) = R*Var [S(t)] + (R + 2S)E [S;(1)] .

Using the independent increment property of the Lévy subordinator, we get

Cov [Sf(s), Sp(t)] = Cov [Sy(s), (Sf(t) — Sg(s)) + S (s)]
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= Cov [Sy(s), S¢(t) = S¢(s)] + Cov[Ss(s), S¢(s)]
= Var [S(s)] .

Hence, the proof of the part (iii) follows from the Leonenko [15] covariance formula and the above relation

(26) Cov [N§(s), N§(t)] = Var [N°(1)| E(S¢(s)) + (E[N°(1)])* Var [S¢(s)]
(27) = R*Var [S;(s)] + (R + 2S)E [S(s)] -

Now, we present an intresting distributional equality of the TCPP.

Theorem 3.3. Let {N(t)}i>0 br the Poisson process with parameter Ao and let X;,i = 1,2,... be the

sequence of the independent and identically distributed (i.i.d.) random variables with pmf
1= A
(28) P{X) =k} = % k> 1.
0

Then, we have

N(Ss(t)

HL Y X, t>0,
1=1

where N(S¢(t)) is a Poisson process subordinated by the Lévy subordinator introduced in Orsingher and

Toaldo [18] and X/s are independent of N(S¢(t)).
Proof. 1t is known that the process {N(Sf(t))}i>0 has the pgf of the form
(29) Gy(u,t) = e tF ol —u)).

Also, the pgf of the X/s can be derived which have the following form

RS P
(30) = A—; i—1— Ai
We consider

E [uNﬂf)] {UZNWW X1} :IE{ {UEN(S"W i ‘ N(Sf(t))” —E [(]E [uxl})msf(t))]

L= N (S5 (1) |
_o Z im1 T A ] = €xp <—tf (Ao (1 N Z()\i—l - Az)ﬂ’))) .
=1 i=1

Using simple algebra, we get the pgf similar to (14). Hence, this completes the proof. O
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4. CONVOLUTED NEGATIVE BINOMIAL PROCESS

We define the convoluted negative binomial process (CNBP) by time changing in convoluted Poisson

process (CPP) with an independent gamma subordinator as

(31) Qi(t) = N°(I'(¢))-

For the gamma subordinator, (12) reduces to

i::( ) pt+k)7 ifn =0,

(32) qi(n,t) =

i%ZH i—1— ki( ) M7 ifn>1,

|
:1 Ak i=1 j=0 J:

First, we recall the following lemma from [25] which is useful in the subsequent result.
Lemma 4.1. The governing PDE for the gamma subordinator {T'(t)}i>0 is given by (see [25])

o hlet) = ploga-+logy = v(pt] fle,t), >0 nd fi(s,0) =0,

where (x) is the digamma function.
Theorem 4.1. The pmf of the CNBP satisfies the following differential equation
8 C C * C
(33) 791 t) = p(log = ¥(pt)) gi(n, 1) + p/o pi(n,y)(logy) fa(y,t)dy.
Proof. We consider
0 . 0 [T .
St = 5 [ s fa(.0dy
= [ it et
= o prin,y ot G\Y, Yy
= | pitn) omn-+ oy — (o) et 1y

ge el

=p /Oo Pi(n,y) (log = ¥ (pt)) fa(y, t)dy + p/ Pi(n,y)(logy) fa(y, t)dy.
. 0

Arranging the terms suitably, we get the result. |
Theorem 4.2. The pmf in (7) satisfies the following differential equation
(34) i (1= e75%) = =X g, 8) + Auor + a5 (n— 1,1,
Proof. We apply the pmf definition for ¢§{(n,t) together with (4) and (10) as
~10, ¢ _ [T ~10,
e rgi(n,t) = / pi(n,y)e ™ faly, t)dy
0
| i) (S fotenn) + folw.0)) d
= “(n ——falz
0 i,y ,Udy G\L, G\y, Yy
[ee] . 1 oo . d
= | pilmy)fely.)dy+— | pilny) - faly. t)dy
0 K Jo Y
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. 1 />*d . i
=it~ [ L) oty

=qi(n,t) — L / </\op§(”»y) + 3 (Nier = X)pi(n — iuu)) fa(y, t)dy
K Jo i—1

n

c 1y . 1 . A
=qi(n,t) + ;Aofh‘(n,t) ™ D (it = A)gf(n — i t)

i=1

C 1 C C
= ql(”v t) - ; (_An * Q1(n7 t) + >\n71 * ql(n - 17 t)) .
On rearranging the terms, we get the theorem. |
Next, we explore the dependence behavior and the Lévy measure of the CNBP.

Theorem 4.3. The mean, variance and autocovariance of the CNBP are given by

() ElQs() = " r

2 veror < 2 (B
(i1) Var{Q5(t)] = o (N +R}:225).
¢(s) 0c(p)] = P5

(iii) Cov[Qi(s), Q5 (t)] m (H +R+25)-

where R=3 2 A and S =2 i\,
Proof. The proof follows on a similar line as in the proof of Theorem 3.2. |

Proposition 4.1. The Lévy measure of the CNBP is given by

S m (o — AR T(k
) Vl('):”zz’“!z,ﬂ( lki! : (u+(A)o)’“'

Proof. Tt is known that the Lévy measure pi(-) of the gamma subordinator is 7g(:) = py~le™#¥. Using the

formula given in [23] and with the help of (5), we get

o OO
(36) ne = [ S r e (mady
0 n=1
0o OO
(37) =/0 > P (n,y)on()py e MVdy
n=1
c© n n ) A\ \ki oo
(38) — pz k! (Alflkv'kl) / ykfle_()\O +H)ydy
n=lk=1 Ak  i=1 v 0
Using the known identity ji)oo 2"e” = nla™ "1 we get
o (N = X)F T(k)
D) = |
(39) Vi() pZZk.ZH M G

Hence, we complete the proof. a
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4.1. LRD Property.

Definition 4.1. For 0 < s < t, let the correlation function Corr{X(s),X(t)] for a stochastic process
{X(t)}+>0 satisfies the following relation (see [16])

cr(s)t™4 < Corr[X(s), X (t)] < ea(s)t™¢

forlarge t, d > 0, c1(s) > 0 and ca(s) > 0. Expressly

i CrEDXO)_ ()

for some ¢(s) >0 and d > 0. The process {X (t)}+>0 is said to have the LRD property if d € (0,1).
Theorem 4.4. The CFNBP exhibits the LRD property.

Proof. The correlation function for the CENBP is given by

(40) Corr [Q5(5), Q5 (1)] = — a2 (). (1)

 VVar[Qf(s)]y/Var [Q5 (1)
Using Part (ii) and Part(iii) of the Theorem(4.3), we get

e (2 4 R+25)
(41) Corr [Qf(s), Q1(t)] =

\/% (%2+R+2S)\/%t (%2+R+2S>

& (% + R+25)

(42) =t 27 - .
\/ﬁ (= +R+2s)\/§ (2 + R+ 25)
This implies that
(43) Jim w !
Therefore, using the Definition 4.1 for d = %, we observe that CFNBP has the LRD property. g

5. SOME OTHER TIME-CHANGED VERSIONS

5.1. CPP Time-Changed by Tempered Stable Subordinator. For 0 < a < 1, the tempered a-stable
subordinator D, ¢(t) is defined by the Laplace transform given by (see [22])

Ele~tDPao(t)] — ~t((a + u)’ — a0)7 0> 0.
We define the CPP time-changed by the tempered a-stable subordinator (TSS) as
(44) Q5(t) = N°(Das(t)), t=0.

Theorem 5.1. The pmf q5(n,t) of the process Q¢ (t) satisfies the following differential equation

9 1/6 n
(45) (o= 51) o8008 = @t Ao = D Ohcs = Nt — i),

i=1
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Proof. Since, it is known that the pdf fi(z,t) of the TSS satisfies (see [3])

1/6
(46) %fg(iﬂ,t) = —afay(z,t) + (a9 — %) fa(z,t),
with fo(z,0) = do(x) and f2(0,t) =
Consider

1/0 o 1/0
(a7 (- 5) astn0 = [ "ot (o= 5) " et
(48) = [ st (g atont) + aaon))
(49) = ag3(n,t) / fa(y,t) d pl(n y)dy.

With the help of (6), we get

o\ 1/? .
(a"* &) gz(n,t) = ags(n,t) — / fily,t) | —2opi(n,y) +Z i—1 = A)pi(n—i,y) | dy
= (a+ Xo)g5(n,t) — Z Ai)gs(n —i,t).
i=1
Hence, this proved the required differential equation. O

5.2. CPP Time-Changed by the Inverse Gaussian Subordinator. For 7, u > 0, the inverse Gaussian
subordinator G, (t) is given by (see [1, Equation (1.27)])

Ble—uG(0) _ 01 (V2ut i~ 1)

(50) , u> 0.
We define the CPP time-changed by the inverse Gaussion subordinator (IGS) as
(51) Q5(t) = N°(Gyu(t)), =0

Theorem 5.2. The pmf ¢5(n,t) of the process Q5(t) satisfies

d2 d n .
(52) <dt2 27mdt) aS(n,t) = 220n3¢5(n, t) — 21 Z(Ai,l —Xi)g5(n —i,t).
i=1

Proof. Let fa(x,t) be the pdf of the IG subordinator. It satisfies the following differential equation (see [13])

(53) s N Ry )

87,‘2

Therefore, we have

o2y )asn0) = [ o) Sy — 2 ) S
-~ 2w | d5(n | pi) (g — 2y ) Fa(v. 0y
e / piny)s fs(%)y
0

d
2722/ y,t)—pi(n,y)d
s f3(y )dy1( y)dy

= -2’ /OOO f3(y, 1) (Aop‘i(m y) + Z()‘i—l = A)pi(n —1i, y)) dy
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=272 g5 (n, t) — 21 Z()\i,l —A)g5(n —i,t).

i=1

Hence, we get the required differential equation. d

5.3. CPP Time-Changed by the Mittag-Leffler Lévy Subordinator. The Mittag-Leffler (ML) Lévy
process My, ,,,(t) is defined by the Laplace transform given by (see [14])

n\"
(54) E[e—ul\/fa,p,p(t)] — < ) ,u>0.
PERT

For 7 > 1, its pdf f5(t) solves the following fractional differential equation (see [14])

or 87—1 oo
e 0 0(0) = s 0= 6000 o)+ [ a0 ) S0

We derive the differential equation solving the pmf gs(n,t) of the CPP time-changed by the ML Lévy
subordinator as

1d° . S ar
;%(M(nvt) :/0 pl(n7S)%fM(LPY“(t)(S)dS

OO

= [ it0,9) g [ 600 )+ [ gt ot )] s

0
T—1 o oo
— gt (Oozi = wlomaitnn) + [ [ guls o oty s ).
Hence, we get
T T—1 0 oo
) it = g (Gomn = vt e + [ [ aulon) g ot vas).

5.4. CPP Time-Changed by the Inverse Tempered Stable Subordinator. For 0 < o < 1,0 > 0, let
{&0,a(t) }+>0 be the inverse TSS defined as (see [13])

(56) E9,a(t) =Inf{s > 0: Dy g(s) > t},

where D, ¢(t) is tempered stable subordinator.

We define the CPP time-changed by the inverse TSS as
(57) Q5(t) = N (&y.a(t)), t20.

Let f5(z,t) be the pdf of the inverse TSS solves the following differential equation (see [13])

m

(58) %fs(l‘, t) + 60(t)60(x) —_ Z (ﬁll) e(lfi/m)(_l)iaa.;i fs(l‘, t),

“ (2
i=1

where §(z) = f5(2,0) and lim,_, ~ f5(z,t) = 0.
Let ¢&(n,t) be the pmf of the CPP time-changed by the inverse tempered stable subordinator. Then, for
m = 1/v > 2 with the help of (58), we have

Gt = [ pins) S (o)

dt
- /1°°p§(n, 5) (Z (?)6(17“’")(71)1‘%&(3,15) - 50(t)(50(s)> ds

i=0
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m

=3 ()0 [ i) o s s — a0t (.0

C

<.
Il

i di-1 gi—k

m .
< )9(1 m)(— ZZ(—l)]mﬁ(”:S)mﬁ%(S»t)

j=1

( )e“ i/m) / F5(5: )i, 5)ds — do(B)p5 (n, 0).

Ms

I
—

Ms

_l’_

i=1

Proposition 5.1. The pmf g§(n,t) solve the following differential equation
d «@ n
(e + dt) g5 (n,1) = (0 = X0)g5(n, 1) + Y (Nim1 — \i)g§(n — i, 1)
i=1
+5(n,8) f5(s,8)|s=0 — t7VE 124 (= 0)p§ (n, 0).
Proof. Tt is known that (see [12])
9 —apl-a 0 “ e}
(59) %fg,(am 1)+t B 72, (=0t)do(z) + | 0+ pn fs(x,t) = 6% f5(x,t).
Hence, we derive the differential equation as
d “ c * c e} —apl—a 0
0+ — U g (n,t) = pi(n,s) | 0% fs(s,t) =t “Ey 2 (—0t)do(s) — a—fg,(s,t) ds
0 x

= 0°g5(n,1) + p§(n, 5) f5 (s, ) |s=0 — tE1 1% (= 0)p§ (n, 0)

=+ /OOo </\()pf(’n, 8) + Zz_;(/\zl - /\l)pi(n -1, S)) f5(S, t)dS

= (0 = Xo)gS(nt) + D (Nic1 — Ai)g§(n — i t)
i=1
+ i (1, 8) f5(5,8)|s=0 — t B 1%, (=08)p§ (n, 0).

Hence, we get the result. |

5.5. CPP Time-Changed by the First Hitting Time of the Inverse Gaussian Subordinator. Let
&(t) be the first hitting-time of the IG subordinator Gy, (t) defined as

Et)=inf{s >0:G,(s) >t}, t>0.
We define the CPP time changed by the first hitting-time of IG subordinator as
(60) Q5(t) = N°(&(1)), t=0.

Proposition 5.2. The pmf g§(n,t) = P{Q§(t) = n} solves the following differential equation

T)\/§€7U2t/2

1/2
n(2425) 5000 = 5 0)a(0.0) = G+ M) - 2

pi(n,0)

- Z(AH —N)gE(n —it).
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Proof. The density fs(z,t) of the £(t) satisfies the following result (see [26]

8 t/2
P folz,t) +n (V + 2(%) 77\/\6/7?: do(z) = nufe(z,t),

with fe(z,0) = do(x). Hence, we get

d 1/2 o ) ) Zt/2
Ul (1/ + 2dt> g(n,t) = /0 pi(n,s) (nl/fs(svt) - %fa(s,t) - W) ds

vt
—n?t/2
= i, 05(0.0) - wasnst) ~ 2 g, 0)

_ /000 (_Wg(n,, )+ Y (e = N)p§(n — m) fo(s,t)ds

i=1
T/\/ie*’lz"'/2

=p{(n,0)f6(0,t) — (nv + Xo)gs(n,t) — $(n,0
Pi(1,0)f6(0,) — (v + Ao)gg(n, 1) N pi(n,0)
=Y (i = A)gg(n —it).
i=1
Hence, we completes the proof. |

5.6. CPP Time-Changed by the Multistable Subordinator. Let M (t) be a multistable subordinator
with stability index «(t) and the Lévy measure given by (see [5])

a(t)

2N gmalt)=lg 0.
F(l—a(t))x T, T >

(61) m(dz) =
We consider the CPP time changed by the multistable subordinator as

Ye(t) = N°(M(t)), t>0.

The Lévy measure of Y¢(¢) is calculated as
+(dz) / Zpl(n $)0p (dx)me(ds)

(i Ai) —)\Os a(t) —a(t)—
[T R T A ey M e

nlklAk i=1

= )\i)ki a(t) % k—a(—1,—Aos
Zk'H Jn(dI)F(l—a(t))/o ghma=1c=A08 4

Ak i=1

M i =
BV vy

3
Il
=

T Aim =AM at)  T(k—aft)
%: T o 5,L(da:)r(1 —al)) pEe

n=1 i=1
> 2 la(t)) et — M) kl(—1)k+1
= Z k! a(t)) (A1 — i) 8. (de) (-1 ’
) k o et
n=1k=1 A" i=1 . 0

where 9,, is Dirac delta function.
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