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REPRESENTATIONS BY DEGENERATE BERNOULLI
POLYNOMIALS OF THE SECOND KIND

DAE SAN KIM, TAEKYUN KIM*, AND HYUNSEOK LEE*

ABSTRACT. In this paper, we consider the problem of representing any polynomial in
terms of the degenerate Bernoulli polynomials of the second kind and more generally
of the higher-order degenerate Bernoulli polynomials of the second kind. We derive
explicit formulas with the help of umbral calculus and illustrate our results with some
examples.

1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to derive formulas (see Theorem 3.1) expressing any polynomial
in terms of the degenerate Bernoulli polynomials of the second (see (1.11)) with the
help of umbral calculus and to illustrate our results with some examples (see Chapter
6). This can be generalized to the higher-order degenerate Bernoulli polynomials (see
(1.12)). Indeed, we deduce formulas (see Theorems 4.2) of representing any polynomial
in terms of the higher-order degenerate Bernoulli polynomials again by using umbral
calculus. Letting A — 0, we obtain formulas of expressing any polynomial in terms of
the Bernoulli polynomials of the second and of the higher-order Bernoulli polynomials
of the second kind. These formulas are also illustrated in Chapters 5. The contribution
of this paper is the derivation of such formulas which, we think, have many potential
applications.

Let p(z) € Clz], with degp(x) = n. Write p(z) = > ;_, axBx(x), where B,,(z) are the
Bernoulli polynomials (see (1.3)). Then it is known (see [11]) that

1 1
(1.1) ay = E/ p®(x)dx, for k=0,1,... n.
“Jo
We can obtain the following identity (see [11,17]) by applying the formula in (1.1) to
the polynomial p(z) = Z;i mBk(I)Bmk(I) and after slight modification:
n—1 1 9
1.2 By (2)Bay i (- By () Bay
(12) ;Qk(%—%) 24 () Banap () & 57— B () Bon-a ()
I~ 1 /2n 1
-y = Boy Ba, — Hon—1Bay By (x) Ban-1,
n;2k<2k> 2k D2 2k($)+n -1 2(£E)+2n_1 1 (%) By
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where n > 2, and H,, =1+ +---+ 2. Letting 2 = 0 and = = £ in (1.2) respectively
give a slight variant of the Miki’s identity and the Faber-Pandharipande-Zagier (FPZ)
identity. Here it should be emphasized that the other proofs of Miki’s (see [6,20,23])
and FPZ identities (see [4,5]) are quite involved, while our proofs of Miki’s and FPZ
identities follow from the simple formula in (1.1) involving only derivatives and integrals
of the given polynomials.

Analogous formulas to (1.1) can be obtained for the representations by Euler, Frobenius-
Euler, ordered Bell and Genocchi polynomials. Many interesting identities have been
derived by using these formulas (see [7-12] and references therein). The list in the
References are far from being exhaustive. However, the interested reader can easily
find more related papers in the literature. Also, we should mention here that there
are other ways of obtaining the same result as the one in (1.2). One of them is to use
Fourier series expansion of the function obtained by extending by periodicity 1 of the
polynomial function restricted to the interval [0,1) (see [15-23]).

The outline of this paper is as follows. In Section 1, we recall some necessary facts that
are needed throughout this paper. In Section 2, we go over umbral calculus briefly.
In Section 3, we derive formulas expressing any polynomial in terms of the degenerate
Bernoulli polynomials of the second. In Section 4, we derive formulas representing any
polynomial in terms of the higher-order degenerate Bernoulli polynomials of the second
kind. In Section 5, we illustrate our results with some examples on representations by
Bernoulli polynomials of the second kind. In Section 6, we illustrate our results with
some examples on representations by degenerate Bernoulli polynomials of the second
kind. Finally, we conclude our paper in Section 7.

The Bernoulli polynomials B,,(z) are defined by
(1.3) ! ert—ifg )5
. et —1 _n:O ol

When z = 0, B, = B,(0) are called the Bernoulli numbers. We observe that B, (z) =
S () Baoja?, LB, (x) = nB,_1(z). The first few terms of B, are given by:

=0 \;
1 1 1 1 1 5
By=1 By=—= By== By=——. Bs = —, By = ——. By = —
0= DR M 300 78T 40 7B 30" 71 66’
691
12:*%,~-§B%+1:0, (k>1).

More generally, for any nonnegative integer r, the Bernoulli polynomials B,(f)(at) of
order r are given by

t ' xt - (r) t"
(14 () e - L arwt

n=0

The Euler polynomials E, (x) are defined by

2 . t"
(1.5) e _T;En(x)m.
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When z = 0, E, = E,(0) are called the Euler numbers. We observe that E,(z) =
>0 (?) En_j3l, L E,(x) = nE,_1(x). The first few terms of E, are given by:
1 1 17 31

4’ 5 7 8» 9

1
Bo=1E =—> Ey=
0 ) 1 23 3 27 27 )

Eo =0, (k> 1).

The Genocchi polynomials G, (x ) are defined by

(1.6) ) +1 Z

-0
When = =0, G,, = G,,(0) are called the Genocchl numbers. We observe that G,,(x) =
> o (;‘)Gn,jxj, 4G, (x) = nGp_i(z), and deg G,(x) = n — 1, for n > 1. The first
few terms of G, are given by:

Go=0 G =1, Gy=—1,CGy =1, G = -3, Gs = 17, Gy = —155

G12 = 2073, ey G2k+1 = O, (k’ Z 1)

For any nonzero real number A, the degenerate exponentials are given by

[ee)

(1.7) (1) = (14 M)F =3 (@,
ex(t) = eh(1) = (1 A% =S (1al.

The compositional inverse of e,(t) is called the degenerate logarithm and given by

(18) log (1) = (4 1), (see [13]),
which satisfies ey (log,(¢)) = log,(ex(t)) = t.

xt

Note here that limy_ge3(t) = e*, limy_olog,(¢t) = log(t).

Recall that the Bernoulli polynomials of the second b,(x) are given by

t
(1.9) log(1 +t + Z

When x = 0, b, = b,(0) are the Bernoulli numbers of the second kind.

More generally, for any nonnegative integer 7, the Bernoulli polynomials of the second
by (x) of order r are given by

(1.10) <m> (1+1) = ;bgﬂ(:ﬁ)g.

When z = 0, b = b\)(0) are the Bernoulli numbers of the second kind of order 7.
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The degenerate Bernoulli polynomials of the second kind b, A( ) are defined by
t
1.11 ——(1+¢t)" by (
(L.11) log, (1 + 1‘ * Z AT

which are degenerate versions of the Bernoulli polynomlals of the second kind in (1.9),
For = 0, b, = b, (0) are called the degenerate Bernoulli numbers of the second
kind and introduced in [14].

More generally, for any nonnegative integer r, the degenerate Bernoulli polynomials of
the second bglrz\(x) of order r are defined in [13] by

(1.12) <m> (1+1)" Zb‘”

We remark that b, \(z) — b,(z), and bf:;(x) — b (x), as A tends to 0.

We recall some notations and facts about forward differences. Let f be any complex-
valued function of the real variable x. Then, for any real number a, the forward
difference A, is given by

(1.13) Auf(z) = f(z +a) — f(z).
If a = 1, then we let
(1.14) Af() = Af(@) = f(o+ 1) — f(2).

In general, the nth oder forward differences are given by

(1.15) Al f(z) = ; (T;) (=) f(z + ia).
For a = 1, we have

n

(1.16) A'f(z) =Y (7) (=)™ f(x + ).

=0
Finally, we recall that the Stirling numbers of the second kind Ss(n, k) can be given
by means of

(1.17) e—l stk—'

n==k
2. REVIEW OF UMBRAL CALCULUS
Here we will briefly go over very basic facts about umbral calculus. For more details

on this, we recommend the reader to refer to [3,22,24]. Let C be the field of complex
numbers. Then F denotes the algebra of formal power series in ¢ over C, given by

i k
F= {f(t) = Zak% ar € c},
k=0 ’

and P = C[z] indicates the algebra of polynomials in & with coefficients in C.
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Let P* be the vector space of all linear functionals on P. If (L|p(x)) denotes the action
of the linear functional L on the polynomial p(x), then the vector space operations on
P* are defined by

(L + Mlp(x)) = (Llp(x)) + (M|p(x)), (cLlp(z)) = c(L|p(x)),
where ¢ is a complex number.

For f(t) € F with f(t) = Z Ak, We define the linear functional on P by
k=0 '

(2.1) (f®)lz*) = ay.
From (2.1), we note that

{t*2™) = nld, g, (n,k>0),
where 6, is the Kronecker’s symbol.

Some remarkable linear functionals are as follows:

(e”|p(x)) = p(y),

(2.2) (e —1lp(x)) = p(y) — p(0),
(<= 1‘p<x>> - / plu)du.

Let

(2.3) = (Lla*)

Then, by (2.1) and (2.3), we get
{(fe(®)]«") = (L]").

That is, fr(t) = L. Additionally, the map L — fL(t) is a vector space isomorphism
from P* onto F.

Henceforth, F denotes both the algebra of formal power series in ¢ and the vector space
of all linear functionals on P. F is called the umbral algebra and the umbral calculus is
the study of umbral algebra. For each nonnegative integer k, the differential operator
t* on P is defined by

k. n (n)kmnika if k S n,
(2.4) Fa” = { 0,  ifk>n.
Extending (2.4) linearly, any power series
_ k
ft) = k't eF

gives the differential operator on P deﬁned by

n

(2.5) fan =Y (Z) ar"*,  (n>0).

k=0
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It should be observed that, for any formal power series f(¢) and any polynomial p(x),
we have

(2.6) (f@)lp(z)) = (Af(O)p(x)) = F@)p(x)]a=o-

Here we note that an element f(t) of F is a formal power series, a linear functional
and a differential operator. Some notable differential operators are as follows:

e’'p(x) = plx+y),
(2.7) (" = 1)p(z) = plz +y) — p(x),

“ b= [

t

The order o( f(t)) of the power series f(t)(# 0) is the smallest integer for which a;, does
not vanish. If o(f(¢)) = 0, then f(t) is called an invertible series. If o(f(¢)) = 1, then
f(t) is called a delta series.

For f(t),g(t) € F with o(f(¢)) = 1 and o(g(t)) = 0, there exists a unique sequence
sp(z) (deg s, (z) = n) of polynomials such that
(2.8) {g®) @) |sn(2)) = nlbpp, (n,k >0).
The sequence s, (z) is said to be the Sheffer sequence for (g(t), f(¢)), which is denoted
by sn(x) ~ (g(t), f(t)). We observe from (2.8) that
1
2.9 Sp\T) = —<PnlT),
(2.9 (@) = —onlo)
where p, (z) = g(t)sn(x) ~ (1, f(2))-
In particular, if s, (z) ~ (g(t),t), then p,(z) = 2, and hence

(2.10) Sn(ZL‘) — %xn
It is well known that s, (z) ~ (g(t), f(¢)) if and only if

1 o7 2 si()
2.11 B DN e ICOMY
21 (Go)° & TH

for all # € C, where f(t) is the compositional inverse of f(¢) such that f(f(t)) =
FF@) =t.

The following equations (2.12), (2.13), and (2.14) are equivalent to the fact that s, (z)
is Sheffer for (g (t), f (t)), for some invertible g(¢):

(2.12) f@)sn(x)=ns,—1(x), (n>0),
213) suot0) =3 (1) @)y 0.

with p, () = g (t) s, (2),

n

(2.14) su(@) =" %(g (F®) " T (W) [a")a.

Jj=0
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Let pu(2), qo(z) = 31—y gni® be sequences of polynomials. Then the umbral compo-
sition of ¢, (z) with p,(x) is defined to be the sequence

(2.15) an(P(2) =D dnipi().

3. REPRESENTATION BY DEGENERATE BERNOULLI POLYNOMIALS OF THE SECOND

Our interest here is to derive formulas expressing any polynomial in terms of the
degenerate Bernoulli polynomials of the second kind (see (1.11)). From these formulas,
by letting A — 0, we get formulas representing any polynomial in terms of the Bernoulli
polynomials of the second kind (see (1.9)).

From (1.11) and (1.7), we first observe that

eM—1 eM—1 .
(5.) bu(e) ~ (00 = Sy = 3=y O = = 1)
(3.2) (2)n ~ (1, f(t) = €' = 1).
From (1.14), (2.7), (2.8), (2.12), (3.1) and (3.2), we note that
(3.3) F®)bpr(z) = nb, 1\ (7) = (' — 1)bps(x) = Abp (),
(3.4) F@)(@)n = n(2)n-1,
It is immediate to see from (1.11) and (1.13) that
(3.6) Abpa () = bpa(x + A) = bpa (@) = An(2)n-1,
(3.7) buA(A) = bpx = Adp1,

where 6,1 is the Kronecker’s delta.
Now, we assume that p(z) € C[z] has degree n, and write p(z) = >, _, apbp(x). Let
h(z) = p(x + X) — p(x) = Asp(x). Then, from (3.4) and (3.6), we have

n

h(x) = abiale +A) = bia(x))

=0

(38) = )\Z&ﬂ(l’)l,l

= )\f(f) al(x)l,

1=0
For k > 1, from (3.8) and (3.4) we obtain

n

o

(3.9) (fO) 7 h(@) = AF(0)* ) a(@)

n

=AY Ul =1) - (1= K+ Day(w) .

=k

279
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Letting = 0 in (3.9), we finally get

1

O @) emo = 5 ((FO)Hh(@)), (k= 1),

An alternative expression of (3.10) is given by

As f(t)h(z) = (¢ — 1)h(x) = Ah(z),

1
(310) ar =

k-1
ar = Ak'A h‘( )‘I:O
(3.11) “ (A 1p(3) — A p(0)
_ k-1
= /\k!A Axp(0).
From (1.16), we have another alternative expression of (3.10) which is given by
I N
Qg WA h(.’lﬁ)|w:0
k-1
1 k—1
12 =— —1)F ! -
3.12) w2 () s e

By using (1.17), we obtain yet another expression of (3.10) that is given by

1 k-1
ax = 1 ((F(O)" 7 h(@)
(3.13) _ %<(k ! e~ h(a:)>
;< > Sglkfl h( )>

I=k—-1
n

1
Nk

I=k—1

1
Sall,k = 1)

() (),

where p)(x) = (&)'p(r).

By making use of (2.7), we have still another expression of (3.10) which is given by
o = S (PO @)

(3.14) - (fl)“tklhmuo

1
— mIlcflh(kfl) (l’) |m:07

where I is the linear integral operator given by q(z) — f;“ q(u)du.
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Now, it remains to determine ag. We first note from (2.2), (2.6), (3.3) and (3.6) that

9(O)p()]a=0 = (g(t)[p(2))

-5 4)

(3.15) _ ;O ak<€;;é)1 bm(x)>
= ol S [0 b))
i)

We want to find more explicit expression for (3.15). To proceed further, we let p(z) =

>or bz’ From (2.2), (2.15) and (3.15), noting that g(t) = -1 Lt we have

At et—17

(3.16) = §<6Att_ ! i biB,-(x)>

where p(B(z)) denotes the umbral composition of p(z) with B;(z), that is, it is given

by p(B(x)) = Y1y biBi(x).

We would like to find yet another expression for ay.
oo Bll,p( =310 2p¥(x). Thus from (3.15) we have

p(x) =

o Bl e’\t -1 (1) (l)
(3.17) ag = g(t)p(z)]e=0 = SN PO, m /

Sy MZM - 00).

281
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We still want to find another expression of a;, which is valid for all 0 < £ < n. From
(2.8) and (3.1), we have

e = (0 F(Hp() = 239D A (@)l

(3.18) = %Z <I; (=D g(t)p(x + 1)|z=0

Il

Z|

—| =

>~

-
7N

Finally, from (3.10)-(3.18), we get the following theorem.

Theorem 3.1. Let p(z) € Clz],degp(x) = n. Then we have p(x) = > ) _, arbpr(z),
where

_ %i( ) /lH)\p(B(u))dm (0<k<n),

=5 [ a0 - 00)
@ = O 0l + ) = p()amg

= (e = ol + ) — p(a)

= A Ap(0)

=i (17 e - )

So(l, k= 1300 () = p0(0))

r\\.l'_,

= 7" @+ N = (@) emo, (LS k<),

eM—1

where g(t) = ATy f(t) =e' —1, I is the linear integral operator given by q(x) —
fo q(u)du, and p(B(x)) denotes the umbral composition of p(x) with B;(x).

T
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Remark 3.2. Let p(z) € Clz|, with degp(zx) = n. Write p(z) = > ,_, arbi(z). As A
tends to 0, g(t) — ﬁ Thus we obtain the following result:

w5 () rnen). 0<ksw,

Qg :p(B)7
k—1
_i k—1, 1 _l k—1 k1l
= @ = 113 ( l >< e
1 n—1 1
=53 > Sk =1p"0), (1<k<n),
I=k—1

where p(B(l)) and p(B) denote respectively the umbral composition of p(x) with B;(l)
and that with B;.

4. REPRESENTATION BY HIGHER-ORDER DEGENERATE BERNOULLI POLYNOMIALS
OF THE SECOND KIND

Our concern here is to derive formulas expressing any polynomial in terms of the
higher-order degenerate Bernoulli polynomials of the second kind (see (1.12)). Also,
letting A — 0 gives formulas representing any polynomial in terms of the higher order
Bernoulli polynomials of the second kind (see (1.10)).

With g(t) = e;}—(’t)l = %, f(t) =e' —1, from (1.12) we note that

(4.1) biA(E) ~ (9(8)". £ (1)).

Also, from (2.12) and (4.1) we have

(42) FOBI ) = b\ () = (¢ = DA () = Ab (),
and from (1.12), it is immediate to see that

(4.3) AN () = B\ (@ + A) — b () = Anbll ) (@),
BA(A) = B = Anb 1),

where we understand that bﬁff )A(x) = (2)n.
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Now, we assume that p(z) € Clz] has degree n, and write p(z) = Y _,_ Oakb ( ). It is
important to observe from (4.2) and (4.3) that

. )\t_l .
9OM) = S A
M1, M (@)
(44 ERVIORAUES

1 ™ T
Zm(bﬂu(ﬁ‘FA) bleu( )

1 .
= At DALY (x)

=003 (2).
Thus, from (4.4) we have g(t)"b, T) \z) = bno)A( ) = (2)n, and hence

n

(4.5) Z a;g(t b(T) Z a(z);.

1=0
By using (4.5) and (3.4), we observe that

n

(4.6) F) g(t)ple) = Z af (t)" (),

By evaluating (4.6) at = = 0, we obtain

(47) k= 2 F( g0 p(w)mo = 3 (F (D90 ().

This also follows from the observation (g(t)rf(t)k|bl(2 (x)) = U0k, (see (2.8)).
To proceed further, we note that f(t)g(t) = f(t) St = $(eM—1).

Af(t)
Assume first that r > n. Then r > k, for all k =0,1,...,n
@ = 0 (0 ()
= (= DRt ()
1 : k—j k At r—k
(48) = i o0 (B @ later ot
§=0
k
D DAl P
§=0
k Ik
= o 0 (5 ) a0t
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Next, we assume that » < n. If further 0 < k < r, then ay, is the same as the expression
n (4.8). Let r < k < n. Then we have

= (0 g0 (o)
(19) = O - 1) ()

r

- L > () esr-rpto
-~ L jj;_l)w (?>f<t>“p<x>w

J

T

- kyl)\r Z(_l)r_j (;) FOFp(GN).

Summarizing the results so far, from (4.8) and (4.9) we obtain the next lemma.

Lemma 4.1. Let p(z) € Clz],degp(x) =n. Let g(t) = Pet_} ,f(t) =€ —1. Then we
have the following:
(a) For r > n, we have

n

ple) = %Z () (O PN @).

(b) Forr < n, we have
r—1 k p k X T
= e e (st
k=0 " j=0
#2510 e
k=r 7 j=0

We would like to find more explicit expressions for the results in Lemma 4.1.
Let I be the linear integral operator defined on P, which is given by Iq(z) = ett_lq(x) =
f;“ q(u) du.
First, we note from (2.7), (1.16) and (1.17) that
FOFp(GA) = F(OF (@) a=jn
= I (1)
(4.10) — A oo

kr (k ; r) (=) p(iA + 1)

= (k—7)! Z Sg(l,kfr)lfllp(l)(ﬁ\)-

l=k—r

I

285
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From (1.4) and (2.10), we note that

r—k
r—k t i
(4.11) B M (x) = (et_l) 7,
and hence, from (4.11), we see that
¢ r—k
(4.12) <et — 1) p(z) = p(B" P (x)),

where p(B"%)(z)) denotes the umbral composition of p(z) with BZ»(T%) (x).

Now, noting that g(t) = 1ol A from (2.7) and (4.12), we have
g g At et—1

gt p(GA) = g(t)" " p()|o=jn

(4.13) = % (e*ft—1>’"""(et t_ 1>T_kp(x) _
z=j\
r—k
() )L
= BB @) o,
where T, is the linear integral operator given by Iyg(z) = ‘Extt—_lq(x) = ff“ q(u) du.

From (1.17), we see that (£51)" = Y270 So(l + m,m))\Hm(HLn!l)!tl, and hence from

(4.12) and (4.13) we get another expression for g(¢)"*p(j\) in the following:

o090 = o (T (o) e

(4.14) (R k)%)\l (%) p(BH @) _,

= Z So(l+r—k,r— k)MAlp(z) (B(r—k)(x))) ‘I:j/\'
=0

Now, from Lemma 4.1, (4.10), (4.13) and (4.14), we finally arrive at the next theorem.
Theorem 4.2. Let p(z) € Clz],degp(x) = n. Let g(t) = %,f(t) = e -1,
and let I and I, be the linear integral operators defined on P, which are given by
Iq(z) = “2q(x) = [T q(u) du, Lg(z) = ©q(z) = ff“ q(u) du. Then we have the
following:

(a) For r > n, we have

n

) =3 e 0 (ot o)

k=0
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where

(115) gt 00N = 5 P(BT () amin

u (T - k)' r—
=S Syt —kyr— k)mA’p(” (B ()],
1=0
(b) For r < n, we have
r—1 1 k Lk
po) = 3 i (1 7 (4 atornane)

J

+ Z k-l)\r
where g(t)""¥p(jA) is the same as the one in (4.15), and
f(t)k_rp(j/\) = Ik_rp(k_r)(xﬂxzj)\
= A (@)
k—r
k—

- ( )0+

0

=

3

T
r

0 (7))

N

=(k-r) Z Sa(l, k—r (l)(j/\)
I=k—r

Remark 4.3. Let p(z) € Clz], with degp(x) =n. Write p(x) = >_;_, akb,(:)(a:)‘ As A
tends to 0, g(t) — %1 Thus, from Theorem 4.2, we get the following result:

€
(a) For r > n, we have

n

) = 3 O (B @) b 0).

k=0
(b) For r < n, we have

r—1 n
1 - r 1 - r
p(e) =D 15 (B @) lamo 7 (@) + D 100 @) a0 b (2)
k=0 k=r
r—1 1
= Zk_ (k) (B(T k)( ) b(T) +Z Ak r (r) | 0 b](cT>(ZE)
k=0
r—1
L (e (r)
=2_P (B () [a=0 by ()
k=0
Z P (@)oo 0 ().
k= I=k—

Here I is the linear integral operator given by Iq(x) = f”l q(u) du.

T
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5. EXAMPLES ON REPRESENTATIONS BY BERNOULLI POLYNOMIALS OF THE
SECOND KIND

Here we illustrate our formulas in Remarks 3.2 and 4.3 with some examples.

(a) Let p(z) = B,(x) = Y p_, axbr(x). By Remark 3.2, we have

B =) {,i! Sy (5 (7) anBja)} bu(o)
_ .no (Z)an3j+ n {% §(5+1)<111>52(z,k—1)3n11}bk(m)
)

Bo_ B, + {”, S <k | 1)(1)k1an1(1)} bi ().

n—k

n n—k —_ .

(k) ( l >Bn_k_lB£ ’“’}bﬁﬁm, (r > n);
l

0

n n—k n—k

() ()t
=0

N i {(k —r)! g Sy(l,k—1) (n)r.t,-an—T—l} b](:)(x), (r <n).

(b) Here we illustrate Remark 3.2, for p(z) = 37—} mBk(x)Bn,k(m), (n > 2). For
this, we first recall from [11] that

n—2 1

5.1) o) =2 (1) BunBinto) + 28,150,

where H, =143+ + % is the harmonic number and a slight modification of (5.1)
gives the identity in (1.2). Let p(z) = >°,_, axbr(x). Then we have

n—1 1 9 n 1 k k n—2 m 1
T BB = 230 45 () (- {
p k(n—k) nkz:;k‘! — l mz::ojzon—m

x (n " ) BumBum;Bj(1) + Ho_y Z (’? B_;B;(1) b bi(x).

_m7j7m_.7
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(c) In [17], it is proved that the following identity is valid for n > 2:

(5.2) ni mGk(x) 7)=—" i ( )

k=1

B.(x).

Again, by proceeding analogously to (b), we get the following identity:
n—1 1
——G(2)G,
> W —F) k(1) Gk (1)
k=1

:_%g{%é( ( >nz§:<n_m I —]> G " By i (Z)}bk(x).

Further, we have

n—1
1
Gk(I)Gn,k($)
P k(n—k)
n n—2 m—k
4 anm r— T
=—= " Bm,k,jB( RN )(m), (r>n)
n n—m,k,jm—k—j/n—m J
k=0 (m=0 5=0

— k(n —k) === n—m,k,jm—%k—j
anm r—k T
xn_mBm,k,jB§ )}b,ﬁ.)(az)
4 = Sl k—1) &2 (0 Gum -
- T T Bm—r— b ) < .
n 4 { lk—r T 2 \m)n— m(m) +1 1o by (@), (r<n)

(d) In [11], it is shown that the following identity holds for n > 2:

—

1 / o4& () (Hyy — Hy)
D @Bsle) = =5 3 e

n—

Ey 1B (37)’

(5.3)

m=0

ES
Il

1

where H, =1+ l + -+ % is the harmonic number.

Write >3- e k)E (2)Epi(z) = Y 5o arbr(x).
By proceeding similarly to (b), we obtain the following identity:

S o= 2% ()

{Z > ( ) ( -)#Ifl’"ﬂl_mﬂf?m_@(z)} be(z).

m=0 j=0
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(e) Nielsen [19,2] also represented products of two Euler polynomials in terms of
Bernoulli polynomials as follows:

m

Bo@) () = =23 (T)E Bunin-rii(z)

"m+n—r+1

i Z (n) g, Brn-ss1(2)
—\s m+n—s+1
m!n!

2(—1 n+l__ vt
+2=1) (m+n+1)!

m-+n+1-

In the same way as (b), we can show that

m—+n

k
1 k _
En(2)En(x) = =23 55D <z) (-
k=0 " 1=0
ot (ME, m+n—r+1
x {Z 2 W( ‘ )Bm*’”*”&(”

r=1 =0 ¢

n m+n—s+1 (n)Es m+n— $+1
X m( ; )Bm+n-s+1-j3j<”

(1)

m!n!
<m+n+1>vEm} br().

6. EXAMPLES ON REPRESENTATIONS BY DEGENERATE BERNOULLI POLYNOMIALS
OF THE SECOND KIND

(a) Here we illustrate Theorem 3.1, with p(z) = B,,(z). Let B,(z) = > 7 _, axbir(2).

Then, as B,(z) =>7_, (") By’ and £ 1B, (2) = B;(z), we have

J dx j+1

/ll+/\ B, (B(u))du
(6.1) _y <n> By /l - Bj(u)du

=0

(Bj+1(l +A)— Bj+1(l)).

I
3
o
VY
3

1
B, i——
j> i+

.
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Thus we obtain the following various expressions from Theorem 3.1.

Z o {ZZ () ()P B - ]+1<l>)}bk,x<x>

=0 j=0

1 By
== (]) I (Bj+1()\) - Bj+1)b0,/\(x)

;{z(k;y-m1Z<BH(A+Z>_W}W>

(Bjs1(A) = Bji1)boa(2)

3

2 Aﬁ)&@k—lﬂmeU—BWO}mM@.

+
=~
\ |
—N—
—

In addition, we have the next result from Theorem 4.2.

o () e (")

7=0 [=0 i=0

xSo(l+7 = kyr = B)But BN o @), (> ).

L5 LSRNt g (R =R (i
B = 2 i 2 Y G)ae o)
X&U+r—hr—@BnhB“H(M}WA)
" r (r Fro - ‘ .
LS e (B =R
_kzok!)‘k ;l:o;( ! (j>(l+r_k)!)\(n)l( i >

+
1 ~ _ifr\[(n ) .,
+ ka{Fmﬂﬂﬂlya()<aykrﬂ%@krﬂ%lUM}%&@L

(r <n).
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(b) Here we illustrate Theorem 3.1, for p(z) = >_,_ ikn ) Bi(x)Bp—r(z), (n > 2).
Let p(z) = >";_y arxbrr(x). Then, by making use of the identity in (5.1), we obtain
n—1 n k
1 1 k
— Bux)B,_ — — _
> e BB = Y > ()
k=1 k=0 1=0

x {%;2 - E — (;) By /ll+A By (B(u))du + %Hn_l /ll+A Bn(B(u))du} ber(2)
2 {n - — <;> Boom /0A Bn(B(u))du + H, /0A Bn(B(u))du} bo(2)

L () (SR eemo 0 -n
) = Bu(D) } bia(w)

_ n?_A {” . ! _ (;) By, /0 B (B(u))du + H, /0 ' Bn(B(u))du} boa(2)
n Sy(l,k —1) {:LZ_:Z - j — (:L) (T) Brm(Bmi(\) = Bru)

YH, ") (Bus(A) = Bu)) } boa (),

where fl+ B, (B(u))du is given by (6.1) and H, = 14 % 4 --- + ~ is the harmonic
number.

(c) Here we illustrate Theorem 3.1, for p( ) =S k(n ) Ep(x)E,—(z), (n > 2).

Let p(z) = Sop_o arbpa(z). Write ST707) o= k)Ek( 2)E,_i(z) = Y p_o arbia(x). Then,
by making use of the identity in (5.3), and proceeding similarly to (b), we obtain the
following identity:

— @
—
>~
~
S~—
v
——
S
=
>4

XEn—m+1 B
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__4
T onA

4
/\k

(::1) (anl - anm) A
n—m4+ 1 En—m+1 /0 Bm(B<U))dU} 607)\(1‘)

{ i 52(l7 k — 1) i: (:1) (Hn—l - Hn—m)

— 1
=k—1 m=0 n m+

NE

o

® 3

> =

3

=1

m

xEn_mH( l ) (Bui(3) — Bm_l)} bex ().

(d) Here we illustrate Theorem 3.1, for p(z) = Y27~ k(n 5 Gr(@)Gnoi(@), (n = 2).

Write p(x) = > ,_, axbrr(x). Then, by making use of the identity in (5.2), and pro-
ceeding analogously to (b), we get the following identity:

> g CeG)
S H{EE e () () [ ne e
A {E () [ s
- 5 {ZmZ( e (T () E Batn ) - Ba) } bi(z)
*%{ZZZ(Z e /OABm< ( ))du}boA( )
S H S S () () s 0 - 1) s

(e) Nielsen [19,2] expressed products of two Bernoulli polynomials in terms of Bernoulli
polynomials. Namely, for positive integers m and n, with m +mn > 2,

m n BZsBm n—2s(x) m Bm n
B Bute) = X (1)t (g ) Peclmzncal) gy Do

- m-+n—2s (m)

Again, in a similar way to (b), we can show that

-5 (e T2 () (3)m)
B,

I+ Bern
Xm+n—2s/l Biin-as(B(u))du + (=1)"*! (m+n) b ()

m
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((;Z) " (2ns’> m> % /0A Buin—2s(B(u))du + (—1)"+! (Bjnnjjl’l’)b

S G (IR (AT e

><(Bm n—2s(A 4+ 1) = Brnins(1)) } bra(x)

2 ((
:

(
m n B, A B
s B s B d _1 m+1 Pm+n
d 2$>TL+ (25>m> —m+n—28/0 m+n 2<( (u)> u+( ) (m+n)
1 m+n
12
k=1

(S ssarn () (2
x (W " 28) (Buvin2e 1) = Bruin2s1) } s ().

1
A

Mwm

>/I>—‘

S

7. CONCLUSION

Carlitz [1] is the first one who studied degenerate versions of some special numbers and
polynomials, namely degenerate Bernoulli and degenerate Euler polynomials. In recent
years, we have witnessed that studying degenerate versions of some special numbers
and polynomials regained the interests of some mathematicians and yielded quite a few
interesting results (see [7-19] and references therein).

In this paper, we were interested in representing any polynomial in terms of the de-
generate Bernoulli polynomials of the second kind and of the higher-order degenerate
Bernoulli polynomials of the second kind. We were able to derive formulas for such
representations with the help of umbral calculus. Further, by letting A tend to zero, we
derived formulas for representations by the Bernoulli polynomials of the second kind
and by the higher-order Bernoulli polynomials of the second kind. In addition, we
illustrated such formulas with some examples.

Even though the method adopted in this paper is elementary, they are very useful
and powerful. Indeed, as we mentioned in the Section 1, both a variant of Miki’s
identity and Faber-Pandharipande-Zagier (FPZ) identity follow from the one identity
(see (1.2)) that can be derived from a formula involving only derivatives and integrals
of the given polynomial (see (1.1)), while all the other proofs are quite involved. We
recall here that the FPZ identity was a conjectural relations between Hodge integrals
in Gromov-Witten theory.

It is one of our future research projects to continue to find formulas representing polyno-
mials in terms of some special polynomials and numbers and to use those in discovering
some interesting results in mathematics and in finding their applications to physics,
science and engineering.
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