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On one approach to solution of the Vidal-Wolf’s model
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ABSTRACT. We consider the model of
optimal advertising strategy of the company
and discuss one approach to its solution from
the view of the optimal control theory. We
formulate conditions of the existence of the
optimal solution and, on the base of
Pontryagin’s maximum principle, find its
structure.
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1. Introduction

Optimal control theory began to take shape as a mathematical discipline in the
1950s. The motivation for its development were the actual problems of automatic control,
satellite navigation, aircraft control, chemical engineering and a number of other
engineering problems.

Optimal control is regarded as a modern branch of the classical calculus of
variations, which is the branch of mathematics that emerged about three centuries ago at
the junction of mechanics, mathematical analysis and the theory of differential equations.
The calculus of variations studies problems of extreme in which it is necessary to find the
maximum or the minimum of some numerical characteristic (functional) defined on the
set of curves, surfaces, or other mathematical objects of a complex nature.

The development of the calculus of variations is associated with the names of
some famous scientists: Bernoulli, Euler, Newton, Lagrange, Weierstrass, Hamilton and
others. Optimal control problems differ from variation problems by the additional
requirements imposed on sought solution, and these requirements are sometimes difficult
and even impossible to fit applying for solving the methods of the calculus of variations.

The need for practical methods resulted in further development of variation calculus,
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which ultimately led to the formation of the modern theory of optimal control. This
theory, absorbed all previous achievements in the calculus of variations, and it was
enriched with new results and new content. The central results of the theory — the
Pontryagin’s maximum principle and the dynamic programming method of Bellman —
became well known in the scientific and engineering community, and these are now
widely used in various academic fields [1, 2, 3, 5, 6].

In this paper, we consider one very interesting application of the methods of
optimal control theory for solution of some economical problem known as Vidal-Wolf’s
model of optimal advertising strategy of some company [4, 7, 8] This model, a
significant framework in advertising strategy optimization, has its roots in the evolving
landscape of marketing theory and practice during the late 20th century. As businesses
began to recognize the importance of data-driven decision-making and consumer-centric
approaches, the need for a structured model became evident.

The Vidal-Wolf’s model is one of the first models of this type and in this model
change of the goods sales volume at time ¢ is the function of four factors: advertising
expenses; constants expressing sales reaction on advertising; saturation level of the
market with advertised goods and constants expressing the reduction of sales volume.
This model serves as a powerful tool for analyzing the dynamics of consumption on the
advertising and uses in real-word business.

One of the groundbreaking aspects of the Vidal-Wolf’s model was its focus on
feedback mechanisms. This innovation allowed marketers to continuously assess the
performance of their campaigns and make real-time adjustments based on consumer
responses. This iterative process was particularly relevant in the context of digital
marketing, where consumer preferences could shift rapidly.

As the model gained recognition, it was adopted by various industries, from retail
to technology. Businesses began to see tangible improvements in their advertising
effectiveness and return on investment (ROI), reinforcing the model's credibility. Over
time, the Vidal-Wolf’s model became a cornerstone of modern marketing education,
featured in numerous textbooks, academic papers, and marketing courses around the
world.

The Vidal-Wolf model emerged from the collaborative efforts of Dr. Jean Vidal
and Dr. Anna Wolf, who sought to create a comprehensive framework for optimizing

advertising strategies. Their vision, combined with the technological advancements of the
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time, laid the foundation for a model that continues to influence marketing practices
today. As businesses strive to adapt to ever-changing consumer behaviors and market
dynamics, the principles of the Vidal-Wolf’s model remain relevant and valuable in
guiding advertising strategies towards success.

In this paper, we formulate the problem of optimal advertising strategy of the
company as the simplest optimal control problem, derive the basic conditions for
existence of the optimal solution and, using Pontryagin’s maximum principle, find its

structure.

2. Specifying of the problem

Optimal control problems are classified on several types: the simplest problem,
the two point minimum time problem, the general problem, the problem with
intermediate states, the common problem, etc. [1, 5, 6]

We consider one of them — the simplest problem (S-problem). According to [1], it

consists of minimizing a terminal functional on a set of processes x(z), u(¢) of a
controlled system with fixed left end of a trajectory and fixed initial #, and terminal £,

times. This problem has the form
J =D(x(¢,)) > min,

X=f(x,u,t), x(to)zxo, uel, telt,t], )
where a scalar function ®(x) belongs to the class C,(R" — R). Here x € R" is state
variable, u € U — R" is control variable. Time interval [ =[¢,,¢] is fixed. We assume
that the function f(x,u,t) is defined and continuous on R" xU x I and has continuous
partial derivatives f (x,u,¢)on that set. We consider a set of piecewise-continuous
functions u(?) with the range in compact U as the class of controls. A process x(¢), u(¢)

is regarded to be optimal if for any other process X(¢), #(t), the following inequality is
true
D(x())) < D(F(2))-

The S-problem consists in determining of the optimal process.
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Necessary conditions of optimality in S-problem are given by Pontryagin’s maximum
principle [1, 7].
Theorem. Let process x(¢), u(¢) be optimal in S-problem. Then there exists a solution

w(t) of conjugate initial-value problem

y =—Hly, x(0),ut),0), y () ==, (x(t)) )
such that for any ¢, <f<¢,
H(y (1), x(t),u(?),t) = max H (y (1), x(t),u,1). ©)

Here H(y,x,u,t)=vy" f(x,u,t)is Hamilton function (Hamiltonian). We will consider
the application of the maximum principle for solution of one important problem known as
Vidal-Wolf’s model of advertising strategy of a company.

Let us consider a company supplying a certain product to the market. Let M be
the market capacity of this product, i.e. the saturation level, depending on the number of
potential buyers. In other words, M is the maximum possible volume of demand for the
company's products. The company's income depends on the sales volume S, and two

factors influence the change in sales volume:

. dS
1. The increase in sales S :d_ is proportional to the flow of advertising
t

S
expenses u(?) and the portion of potential demand (1 - ﬁ] that is not yet satisfied by

the firm's supply. Therefore, the closer the sales volume is to the saturation level, the less
effective the advertising expenses become.

2. The sales volume decreases at a constant rate b, since part of the population
forgets about the products of this firm or begins to buy similar products of other
companies. This assumption means that in the absence of advertising, when u(¢) =0, the
dynamics of the variable S is described by the equation S =-—bS and, therefore, the
sales volume falls exponentially.

Combining these hypotheses, we obtain the following equation for the dynamics

of sales volume taking into account investments in advertising:

SzAu(l—%j—bS, S0)=S,e(0,M), 4)
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where b is «forgetting» coefficient, A4 > 0is proportionality coefficient.

The company's advertising costs are described by the function C(u) (so that,
generally speaking, at any given moment in time they may not coincide with the flow of
expenses u(t)).

Let the company's objective be to maximize discounted profit. Since the
company's income is proportional to sales volume, then the current profit is equal to the

difference PS(¢)—C(u(?)), and the profit received over the period [0,7] is determined

by the integral
D(u) = je (PS(t)—C(u(r)))dt .

If current advertising expenses are limited by the sum R, then admissible
controls must satisfy the constraint 0 <u(#) < R.

Thus, the problem consists of determining the admissible advertising strategy
u(t), which provides the maximum value for the criterion ®@(u). In this case, the

dynamics of sales volume is described by equation (4).
Let us consider the Vidal-Wolf model under the assumption that the company's

advertising costs coincide with the flow of expenses u(¢), that is, C(#) =u . Then the

optimality criterion will be written as

Dd(u) = JT'e’” (PS(t)—u(r))dt .

. . . . : S :
It is convenient to replace the variable S with a new variable x = H , which has

the meaning of the market share covered by the sales of a given company. From the

equation
. S
S = Au I—M -bS, S(0)=S,

we obtain a dynamic equation and an initial condition for the variable x:

x'=au(1—x)—bx, x(0)=x,,
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A S,
where a = ﬁ and x, = HO Taking into account the change of variables, the Vidal-

Wolf model will take the following form:

J= ]-e‘” (px(t)—u(t))dt — max ,

X= au(l—x)—bx, x(0)=x, (0,1,
0<u(®)<R.
Here p = PM . Introducing variables x, = xand x, =e" ( § 2 —u) with initial condition
x,(0) =0, we arrive at the simplest problem of optimal control
J=—x,(T) > min,

X, =au(l—x)—>b
{‘.Cl afl,,( 7)=b 6)
X2=€'(_pxl—u)
x,(0)=x,, x,(0)=0
0<u(®)<R.

Since x,, €(0,1) note that from equation X =au(l—x)—bx, it follows that

0 < x,(¢) <1 on any admissible trajectory.

3. Solution of the simplest problem

We write necessary conditions of optimality. We form Hamiltonian
H(y,x,u,t)= (au(l —x,)—bx, )1//1 +e" ( X, — u) w, and conjugate initial-value

problem

v, =0 v(M)=1"

From the latter, we get ,(t) =1, 0<t<T . Therefore, the first differential equation in

{m =(au+byy, —e " py, {wl (1)=0

the conjugate system becomes

y, =(au—b)y,—e""p (6)
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with initial condition y,(7)=0.
According to the maximum principle, optimal control u”'(f) in any time

t €[0,T7] is a solution of the extreme problem

(a(l—xl)t//1 —e”’)u —> max. (7)

0<u<R
For convenience, we introduce auxiliary variable A(f)=e “w,. Then differential
equation (6) becomes

A=(+r+au)i-p (8)
and A(T)=0.
Then extreme problem (7) gets the form

(a(l—xl)l—l)u — max, t€[0,7]. ©)

Its solution, due to linearity of Hamiltonian by control variable, is
R, ifa(l-x)A-1>0,
u*(@)=+< 0, if a(l-x)A-1<0, (10)
[0,R], ifa(l-x)A-1=0.
Taking into account the rule (10), we begin to construct optimal control in backwards.

When ¢ =T we have
(a(l—xl(T))l(T)—l)u(T) —>max.

0<u<R

From here and from the fact that A(T) = ey, (T') = O we obtain u”'(T)=0.
We introduce a switching function /(¢) = a(l1—x,(¢))A(¢)—1. Then (9) can be
written as

h(t)u—)gna)é, t€[0,7]. 1

Due to continuity of the function 4(#) we conclude [9] that u” (¥)=0on e (z,T]

(Fig. 1).
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H
0 T T t
Fig.1. Optimal control on interval ¢ € (z,T].

' (¢) to the left from 7 can be especial or take the boundaries Q or R .

Optimal control u
First we consider the case of especial control. Let on some interval A a switching
function /() =0(Ais called especial interval of time). Then fl(t) =0on Aas well
Observe that
h(t) = a(l—x)A—aix, = a(l —xl)[(b+r +au)i —p] —aAlau(l—x,)—bx,) =
= a[(b+r)/1—i%x1 —p(l—xl)].

Note that on especial interval 4 = # . Consequently,
a(l-x,)
: b+r X
h(t)=a - L ——p(l-x)|=0
® L(l—xl) a(l-x,) M ‘)}

or
ap(x,)’ +(r—2ap)x, +(ap-b-r)=0, teA. (12)

Thus, on especial interval optimal trajectory must satisfy the equation (12). Its roots are

1_1_r+\[r2+4apb r—yr* +4apb (13)

X, and x{ =1-———— .
2ap 2ap

If
ap>b+r (14)
then

’ 2
1 1_ﬂe(0’1)_

X = (15)
! 2ap
We denote it by X = x| . Note that if condition (14) doesn’t hold then both roots x, and

xl2 of (12) don’t belong to (0,1) and, therefore, optimal control cannot have especial

interval A .
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Assume further that (14) holds. This means that on especial interval optimal
trajectory is
x?()=x.
Since on A x=0, therefore 0=au(l—Xx)—bx and, taking into account (15), we get

especial control

_ b 2ap
i=2 = 4 (16)
al r++r’ +4apb
If & < R then u®(¢) =u on especial interval A .
uopt 1‘
R
u ,"_?
' ‘— * >
0 A T T t

Fig.2. Optimal control on interval t € AU (7,T].

Thus, if optimal control has areas of especial one, then in these areas investments in
advertising are constant and aimed at maintaining the most profitable level of sales
volume X (main level).

Now we will show that a control satisfying the maximum principle has at most
two switching points. First, we note that if there is an interval of especial control, then
there is only one. Therefore, if the control has more than two switching points, then it
must take boundary values on some section located between the two switching points. We
will show that such a control does not satisfy the maximum principle and, therefore,

cannot be optimal.

We assume the opposite. Let on some interval (#,,2,) <[0,7] u”'(£)=0, h(t,)=0 and

h(z,)=0. From (10) it follows A(t)<Oon t€(#,t,). Then, obviously, the function
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h(¢) does not increase at the point ¢, (h(zl) < O) and does not decrease at the point ¢,

(ht)>0).
Previously we calculated A(f) = a[(b +r)A—rix, — p(l —xl)]. Since ¢, and ¢,

are switching points then
1

)= T al-x()

—a(l ") and A(t,)

Consequently,

i) = [a (50) 4 Cap )+ G+ r-ap) |
. 1
")

Since x,(t,) €(0,1)and x,(¢,) € (0,1) then

[—ap (x, (z‘z))2 +Q2ap-r)x,(t,)+b+r— ap)] .

h(t)=0<X=x(t) and A(t,) =0 =X =x(1,),
h(t) <0< 0<x(t,) <X and Aft,) <0 <0< x(t,) <X,
h(t) >0 X <x(t,) <land A(t,) >0 <X <x(t,) <1.
From fz(tl) <0Qand fz(l‘Z) > 0it follows x,(¢,) <X and x,(¢,) 2 X . Consequently,
x () <x(t,). (17)
But from differential equation X, = au(l—xl)—bxl for u(¢) =0 (that is, X, =—bx,) we
get that function x,(¢) is strictly decreasing on (Z,,¢,) .Therefore,
x,(8) > x,(2,).

The latter contradicts to (17). This means that control u(¢)=0 in the interval located

between the switching points cannot be optimal.

It is similarly proved that the control taking the value #(¢#) =R on the interval
(t,,t,) <[0,T7] does not satisfy the maximum principle.

Now the structure of control satisfying the maximum principle is clear. If there is
an especial interval to the left of 7 then the control has a main level X, that is,

advertising costs are such that for some time the sales volume is maintained at the trunk
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level X . At the same time, if the initial sales volume is x,, # X then the interval of main
level must be preceded by an interval of enter to the trunk X .
If x,,>X then the enter to the trunk is provided by control u(¢)=0 acting until the

moment 7, such that x(z;)=X. Sales volume is declining exponentially

x,(t)=x,,e””, t<t,.From here we find

Yo

IHT.
X

Note that since x,, > X, then 7, > 0.

We will determine the moment 7 of exit from the trunk X . From (8) we get that

on interval (7,T] function A(¢) is defined by
V4 —(b+r)(T—t)
At)y=——|1-¢ .
® b+r ( )

Putting # =7 and taking into account that x,(7) =X we obtain

1
reT4—n|1-2*r (18)
b+r pa(l-X)

Note that if optimal control has trunk interval then 7, <7, that is the following condition
holds:

1 b

—lnx—i"<T+ In 1—;’/_ ) (19)

X b+r pa(l-Xx)

If (19) doesn’t hold then investments in advertising are not profitable and
u”(t)=0, ¢t €[0,T]. Thus, optimal control in case x,, > X and fulfilling condition (19)
is
0, 0<t<t,
u”(t)=4u, r,<t<r, (20)
0, 7<t<T.
Consider the case x,, <X . Here the enter on the trunk is provided by control u(¢)=R.

From the first differential equation in (5) we get

aR —(b+aR)t aRr
x(t)=——+e X, — .
i b+aR Y b+aR
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Putting ¢ = 7, into the last expression we find the moment of enter of the trunk

7

1 In aR—(b+aR)x,,
b+aR aR—(b+aR)x |

Thus, for x,, <X and 7, < 7 optimal control has the form

R, 0<t<1,,
u”(t)=<u, r,<t<r, 1)
0, 7<t<T.
uopt
R 1
u —0 ;
i ' ‘. — >
0 7, T T t
Fig.3. Optimal control (21)
If T is small and 7, > 7 then trunk interval doesn’t exist and
- R, 0<t<7,
u” ()= (22)

0, 7, <t<T,

where 7, is determined from the condition /(7;)=0.

opt
ul’

1

v

~Ne

0 7,

Fig.4. Optimal control (22)
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Conclusion

We discussed very important question of the theory of optimal control - the
application in the economic problems. In particular, we considered the problem of
optimal advertising strategy in the Vidal-Wolf’s model, reduced it to the simplest
problem of optimal control and, using Pontryagin’s maximum principle, derived the
optimal solution.

We showed the structure of the most effective distribution of the investment in
advertising policy of a company guaranteeing maximum return on investment (ROI) for
various input conditions. Despite its limitations, Vidal-Wolf’s model remains an essential
component of economic theory and practice, offering insights into optimal resource

allocation over time.
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