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ON RAMANUJAN’S CONSTANT

HYUN SEOK LEE

ABSTRACT. The name “Ramanujan’s constant” was coined by Simon Plouffe

and derives from an April Fool’s joke played by Martin Gardner (Apr. 1975) on

the readers of Scientific American. In his column, Gardner claimed that e™ 163

was exactly an integer, and that Ramanujan had conjectured this in his 1914
paper. Gardner admitted his hoax a few months later (Gardner, July 1975). Al-
though, Ramanujan (1913-1914) gave few rather spectacular examples of almost

integers (such en\/ﬁ)’ he did not actually mention the particular near-identity
given above. In fact,

VI3 2062, 537,412,640,768,743.9999999999992500. . .

Why this is so close to integer? In this article, I will give the reason proving
the Schneider-Lang theorem. Also, in this article, I prove the ‘Theorem of 6
exponentials’ that old, first published accounts due to Ramachandra and Lang.

1. INTRODUCTION
We start the following question.
Question 1. Which are the real number t for which 2' is a rational integer ?
Forany aeN, a+0, if we set ¢ = }g%, then 2" = exp(tlog2) = a € N. Hence,

{tGR;ZIGN}:{iOiZ;aEN, a>0}.
og

If we denote this set by Ej, then £y nQ =N. Consider now the set E; = {r eR : 2" €
N and 3’ € N}. Naturally, N c E; c Ey. Also, E; nQ =N. The following problem is
still open.

Question 2. Is it true that E; =N ?
This means
Question 3. Dose there exists an irrational number which belongs to E,?
Proof. This question amount to ask whether there exist two positive integers a and

b such that }Oﬂ = 1986 and at the same this quotient is irrational.
og2  log3

Another equivalent formulation is to ask whether a 2 x 2 matrix loga - logh
log2 log3

(with positive integers a and b) can be singular without a being a power of 2.

We will consider the this quotient in a more general setting. (]

Finally, introduce a third set E3 = {r e R:2' ¢ N, 3" ¢ N, and 5’ € N}. Of course we
have N c E3 c E; c E. In [6], The six exponential theorem implies E3 = N.
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e Replace {2,3,5} be any set of distinct primes. More generally, if we con-
sider three multiplicatively independent algebraic numbers, then there is
no need to restrict the discussion of real value of ¢.

In [1-6], this result is known that the six exponentials theorems as follows.

Theorem 1.1 (old, first published accounts due to Ramachandra and Lang). Let
ay,0 € C, linearly independent over Q. And B1,B2,B3 € C, also linearly indepen-
dent over Q. Then one of exp(;;) is transcendental.

It is the corollary of the above theorem.
Theorem 1.2. If o ¢ Q then one of 2%,3% and 5% is transcendental.

The Six Exponentials Theorem occurs for the first time in a paper by L. Alaogu
and P. Erdos, when these authors try to prove Ramanujan’s assertion that the quo-
tient of two consecutive superior highly composite number is a prime, they need to
know that if x is a real number such that p} and pj are both rational numbers, with
p1 and p, distinct prime numbers, then x is an integer.

Definition 1.3 ([7]). An integer n said to be a ‘superior highly composite number’
if there exists € > 0 such that the divisor function d(n) satisfies

d(m)m™ <d(n)n™® for m#n

Conjecture 1.4 (Four Exponentials Conjecture). Let x1,x be two Q-linearly in-
dependent complex numbers, and y1,y,> also two Q-linearly independent complex
numbers. Then one at least of the four numbers

exp(-xiyj)a (i:1a27j:132)
is transcendental.

However, this statement (special case of the above conjecture =) is yet unproven.
They quote C.L. Siegel and claim that x indeed is an integer if one assume p} to
be rational for three distinct primes p;. This is just a special case of the Theorem
1. They deduce that the quotient of two consecutive superior highly composite
numbers is either a prime or else a product of primes. Theorem 1 can be deduced
from a very general result of Th. Schneider conjectures is equivalent to the first
of eight problems at the end of Schneider’s book. An explicit statement of the six
exponentials theorem , together with a proof, has been published and at the same
time by S. Lang’s book, Chapter 2 and K. Ramachandra’s book Chapter 2, see
[8, 9]. They both formulated the Four Exponentials Conjecture.

2. BASIC DEFINITIONS AND LEMMAS

Lemma 2.1 (Thde-Siegel). Suppose u;j, 1 <i<M, 1< j<N are integers with
|uij| <U. Want to solve

N
> uijx; =0,
i

M
Xi,...,xn €Z, N > M. Then there is a non-trivial solution with |x;| < (NU ) ¥-#.
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Proof. Essentially, the Thue-Siegel lemma is a glorified version of the pigeon hole
principle. Say 0 <x; <X. Then we have (X + 1)N possblities for the x;. Consider

the M-tuple
N
{Zu[jxj} .
=1 i=1, M

So there are (NUX )M possible choices for this M-tuple in ZM. Then if (X + 1) >
(NUX)M there exists a by the PHP a non-trivial solution to the system of equations.

So there exists a solution with |x;| < (NU )ﬁ O

Lemma 2.2 (Thue-Siegel for a number field). Let F' be a number field, and con-
sider M variables. Suppose we have a homogeneous linear equation

N
Z ajjx;j=0,
Jj=1

with N > M and a;j € Op. Assume that || <A. Then there exists a non-trivial
solution with

— M

Ixj| < (CNA) v,
where the constants only depend on F and nothing else.

Proof. The proof is same as in the rational case. Let wy,...,w, be an integral basis
for Op. Write oi;; and x; in terms of wy,...,w;. Then we have Md equations and
Nd variables, and the sizer of the w; are fixed in terms of F, so we can bound them
by CA. Now, apply the Thue-Siegel lemma. (]

Definition 2.3 (Entire functions of finite order).
An entire function f is ‘finite order’ if there exist pog, Ry such that

(@) <exp(lz
The infimum of Py is called the ‘order’ of f and is denoted by p = p (f).

Po) whenever |z| > Ro

Example 1. Here are some functions and their orders:
(1) e, p=1
(2) sin(z), p=1
(3) cos(v/2). p = 1/2
(4) e, p=00
(5) &, p=2.

Definition 2.4 (Meromorphic function). A ‘meromorphic function’ on an open sub-
set D of the complex plane is a function that is holomorphic on all of D except for
a set of isolated points, which are poles of the function.

Definition 2.5. Let 0, ®; be two complex numbers which are linearly independent
over the reals. Let L be the lattice spanned by ®;,0;. That is,

L={mw;+no, : mnecZ}.

Proposition 2.6 (The Maximum Modulus Principle). If f is a non-constant ana-
Iytic function in a region R, then the function |f| does not attain tis maximum in
R. In other words if from some 7o € R, |f(2)| < |f (z0)| for all points z € R, then f is
constant.
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Definition 2.7. An elliptic function (relative to the lattice L) is a meromorphic
function f on C (thus an analytic map f : C - CIP) which satisfies

fz+0)=71(2)
forall®eL and z€C.

The vaule of such a function can be determined by its value on the fundamental
parallelogram:
D= {SOJ1 +ty : 0<s,2< l}
Any translate of D is referred to as a fundamental domain for the elliptic functions
relative to L. The set of all elliptic functions (relative to L) forms a field and L is
called the period lattice or the lattice of periods.

Definition 2.8. The Weierstrass p-function associated with L is defined by the

series . . .
CRE I ]
where L' denotes the set of non-zero periods. The associated Eisenstein series of
weight 2k is
GZk(L) = Z o2k,
wel!
For a complex number z with imaginary part J(z) > 0, let L, denote the lattice
spanned by z and 1. We will denote the corresponding g5, g3 associated with L, by
22(z) and g3(z). Thus,
g(z)=60 > (mz+n)™*,
(m,n)#(0,0)
and
g3(z)=140 Y (mz+n)°.
(m,n)#(0,0)
We set
Az) = 82(2)* -27g3(2)°
which is the discriminant of the cubic defined by the corresponding Weierstrass
equation. We now introduce the important j-function defined as

B (O

82(2)? -27g3(2)?

which by the previous lemma is well defined for every z in the upper half-plane.
the definition of j and using the g expansions for A and G4, we have the following
g expansions for the j function:

Jj(z)=1728

1
j(z) = =+ 744+ 196884 + .
q

Thus the j function has a simple pole at ioco. Since a meromorphic function on a
compact Riemann surface has an equal number of zeros as poles, we see that the
equation j(z) = ¢ has exactly one solution since j has only a simple pole at ico. In
other words, the j function defines an analytic isomorphism between the compact
Riemann surface ﬁ/\l" and the Riemann sphere CP;.
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3. PROOF OF 6-EXPONENTIALS THEOREM

Proof. We construct an auxiliary function

K K
¢(Z) = Z Z P(khkz)gkl“lzekzuzz.

ki=1ky=1

We want to pick the p(k;,k2) to be not all zero, lie in OF, and |p(k1,k,)| small. So
we want /1B + LB + 13B3, for 1 <1y,15,13 < L to have

O (L1 +0P2+13B3) =0.

We have L? equations, and K2 free variables, so we’ll eventually take K?>2I3.
Evaluating ¢ we will get powers of e%Pi are algebraic. Clear denomiators by
multiplying thorugh by, say, D4C. So D®kL¢ (z) vanishes at the L? points ;B +
B2 +13B3. The size of coefficients is CXL, so by the Thue-Siegel lemma for number
fields, we can find p(k;.ky) with

- 3
|p(ki,k2)| < (CKL)ﬁ,
Let K2 =213, then \M| <CKL.

Fact. ¢ is not identically zero, since o1, 0, are linearly independent over Q.

Fact. ¢ does not vanish on all linear combinations [,B1 + LB, + 133 with Iy, 15,15 €
N. Why? Since ¢(z) is order Im and can only have about R zeros in a circle
of radius R, but it has at least R® zeros. So there is a number s > L such that ¢
vanishes at all ;3 + 5B, + I3B3 with [; < s but doesn’t vanish for some chosen
W= SlBl +S2[52 +S3B3, with max(sl,sz,S3) =S.

Now look at
¢ (z) .
11y o, <s (2= 11B1 — B2~ 13B3)
let z=51B1 +52P2+53P3, and use maximum modulus principle on some circle |z =R.
Then we have

g 9(2)
|0 (s1B1 +s2B2 +53B3)] < (Cs) R Ty 1y tyes (2= 1iB1 —12P2— 13B3)
(C)” (C)” i
< (R2)" T‘H%W(ZNS (R/2)'Y3C exp(CRK).

Choose R = s> /K. Then the above is
10CK\"
< CKL(—Z) <exp(-cs’logs),
s

where we’ve used s > L, K = 2'/213/2. So if all of it’s conjugates are not too big,
the usual norm argument will show that it is actually zero. After multiplying bt
DKL DOKLG (5B +52B2 +53B3) is an algebraic integer, and by our estimate on
|p(k1,k2)|, we have all it’s conjugates are < C¥Lexp(CKs)D*K. So ¢ is zero, but
not zero. Contradiction. |
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Remark. What about 4 exponentials? Then we’d have K free variables, and L2
equations. So we’d have to take K = 2L in the end, and s > L which would give

2

2
(%) , and barely fail to give the 4 exponentials conjecture.

4. THE SCHNEIDER-LANG THEOREM

Theorem 4.1 (Schneider-Lang). Let K be a number field, and fi,..., fy meromor-
phic functions of order < p. Let f; = gi/h;, where g, h are holomorphic functions,
and their orders are < p. Consider the ring K[ fi,..., fn], and assume it satisfies
two propetrties,

(1) This ring has transcendence degree >?2

(2) diz preserves this ring.
Then there are only finitely many wy, ..., w, where the f; are simultaneously alge-
braic. We have m <20p[K : Q].

Before the proof, we give some corollaries.

e Take fi =z, and f» = ¢*. Then there are only finitely many o € K with
e* ¢ K. But if o has e* algebraic, then na is also algebraic for any n € N.
So ¢* ¢ Q if a(#0) € Q. So we recover a special case of Lindemann-
Weierstrass Theorem.

e Let fi=¢, fo=¢P? B ecQ-Q with p € K. Then we get that there are
only finitely many o € K for which o® € K. But if there is one, there are
infinitely many: a,02,0.%, ..., except if o = 0,1, i.e. we have recovered
Gelfond-Schneider.

e Let A be a lattice, say A = 0Z + 7, m,/m; ¢ R. We have the doubly
periodic function

1 1 1
w03 % [ irn i)

0#AeA
It is meromorphic, and has pole of order 2 at the points of A. Then

L 2
@(Z)=Z—3— > @)

0+AeA
is also meromorphic of order two. We have the relation

p'(2) = 4p(2)° - g200(2) - 83,
where
1 1
82=60G4 =60 )" 3 837 140G = 140 > a

A#0 A+0

Suppose we have a lattice with g, and g3 are algebraic, in some K. Then
K[p(2),0'(2),z] satisfies the conditions of the Schneider-Lang theorem.
So there are only finitely many o € K with p(a),p’(a) both in K. Sup-
pose we have periods ®;,®;. Then consider p(®;/2) and p’(®;/2), and
suppose that they are algebraic. Siegel prove that the at least one of the two
periods are transcendental. Schneider proved both are. If ®;/2, p(®;/2)
and p’(w;/2) are all algebraic, then nw; /2 is also, contradiction Schneider
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-Lang. As a consequence, we know that if o is algebraic, then p(a) is
transcendental.
e The modular j-function.

%
Jj(t):=1728—4—22—,
&-2783

where T = @,/®;, and thus the lattice is generated by 1 and T. Conse-
quence: if T is algebraic and T is not a quadratic irrationality, then j(t) is

transcendental.

5. PROOF OF SCHNEIDER-LANG

Proof. Outof fi,..., fy there are 2 functions which are algebraically independent,
say f and g. Use these to construct an auxiliary function

K K
0(2)= > > plkik) f(2) 1 g(2)".

ki=1ko=1
The algebraic independence shows that this ¢ is no identically zero unless all
p(ky,ky) are zero. We will pick p(k;,ky) to be algebraic integers in K with small-
ishsize. Say z=01,...,®,, are points where f;(0y) € K. We want that (p(j)(mj) =0
for all 0 </ < L. By the second condition, for any j, f J' is expressible as a polyno-
mial in the other meromorphic functions, say, f j’ (z) =Pi(f1,...,fn). There are Lm
equations to be satisfied, and K free variables. What happens to the sizer of these
quantities when we differentiate a bunch of time? Pick B large which kills all de-
nominators of f(®;),g(®;),f;(ax),... etc. We want B¥+Lo () (@;) = 0. The size
of the coefficients is < BX(CK)E. So choose K? = 2Lm. The Thue-Siegel lemma ap-
plies, and we find p(k;,k,) with |p(k1,k2)| < exp(LlogL). Pick s to be the smallest

number such that (p(”l)((n) #0 for some ® = @y, ..., ®,, but all smaller derivatives
are zero. By construction, s > L.
Look at

9(2)0(z)*

s+j
((z-w)-(z-0y))
where O(z) is a holomorphic function of order < p such that f(z)®(z) and g(z)0(z)
are holomorphic. Then above fraction is an entire function of order < p. Apply the
maximum modulus principle using a circle of big radius R to be chosen later. Eval-
uate at z=w. Then
9 (@)0(w)* ?(2)0(2)*

<max —
o0 (@ =0, (s+ D! TR ((z-ay)-(z- )"
<exp(CKRP +LlogL-smlogR/2),

where in the last equality, the three terms come from ®,¢ and the denominator,
respectively.

Recall we have K2 = 2Lm and s > L, so the optimal value of R is CpKRP~! = 7 So
1
R=(%)". So the bound is
sm

sm
<exp|LlogL- ? log T0K
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. Conclusion:

106D ()] < exp(Zslogs— % log lg()iK)

By multiplying ¢ **!) (@) by a suitable B**?X, we get an algebraic integer which
is <exp(LlogL+Cs), and we derive a contradiction by a norm calculation. The
norm calculation implies ¢ “+1)(®)| > exp(~LlogL—dCs), where d = [K : Q]. So
if m=20p[K : Q], we get the desired contradiction. O

6. CONCLUSION

Let us consider the following interesting example by letting

1++v/-163
—
The field Q(+v/—163) has class number one. In fact it is the “largest” imaginary
quadratic field with class number one. More precisely, there exists no square-free

integer d > 163 such that Q(v/—d) has class number one.
Now for any z in the upper half-plane, the j-function has the following expansion

1
Jj(z) = —+744+196884q + -
q

where ¢ = ¢*™Z. In the case z = o, we have
jlo) = —e V103 1744 196,884V 103 4 ...
Now j(a) must be an ordinary integer as Q(+/—163) has class number one.

Consequently, we have the following expression

V16 = 262,537,412,640,768,743.99999999999925
= (640,320)° + 744+ 0(e ™V

and that j(o) = —(640,320)3. Note that ¢V '3 is a transcendental number by the
Gelfond-Schneider Theorem.

The observation that Q(v/-163) is the largest imaginary quadratic field with
class number one is deeply connected to the Stark-Heegner theorem, sometimes
referred to as the Stark-Heegner-Baker theorem after the work of Stark (1967),
Heegner (1952), and Baker (1971).

e Heegner (1952) was the first to prove that there are precisely nine values
of d for which Q(v/~d) has class number one, although his proof was not
widely accepted at first.

o Stark (1967) later provided a rigorous verification of Heegner’s argument.

e Baker (1971), using his celebrated theory of linear forms in logarithms,
independently proved the result while simultaneously developing powerful
methods for proving effective results in transcendence theory.

The case d = 163 is particularly striking because of its connection to the near-
integer property of ¢™V163
plained by the rapid decay of the exponential term e

Jj(a).

, as seen above. This near-integer phenomenon is ex-
“™V163 i the expansion of
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The theorem states that the only square-free values of d for which Q(+/—d) has
class number one are:

de{1,2,3,7,11,19,43,67,163}.
The case d = 163 is particularly striking because of its connection to the near-

integer property of ¢™V193, as seen above. This near-integer phenomenon is ex-

plained by the rapid decay of the exponential term e¢™™V163

Jj(a).
Remark. The interplay between algebraic number theory, modular functions,
and transcendence theory-exemplified by the Stark-Heegner-Baker theorem and

the near-integer property of ¢™163_demonstrates the deep and beautiful structure
underlying class field theory and the theory of modular forms. Moreover, Baker’s
work in transcendence theory has had profound implications, leading to explicit
diophantine approximations and results concerning the linear independence of log-
arithms of algebraic numbers.

in the expansion of
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