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Abstract

We develop two new equations which describe propagation of two
different wave modes simultaneously. The first equation is a two-mode
Clannish Random Walker’s Parabolic equation (CRWPE), and the sec-
ond is a two-mode third-order Clannish Random Walker’s Parabolic
equation (TCRWPE). We will use a new method, namely, the (G?—LA)-
expansion method to conduct this analysis.
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1 Introduction

Two-mode type is a new family of nonlinear partial differential equations
(PDEs) which fall in the following form: [1, 2]

0 0 0 0
2 o 9 o L O _
Upt—S um+< : as x> N(u,ux,...)—i—( : Bs >L(um,...) =0, (1)
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where N (u,ug,...) and L (uyz, 7 > 2) represent the nonlinear terms and
the linear terms of the examined equation. w(z,t) is the unknown field-
function, s > 0 is the phase velocity, |5] < 1,|a] < 1,8 is the dispersion
parameter and « is the parameter of nonlinearity. With s = 0 and integrat-
ing with respect to ¢, the dual-mode problem is reduced to a (PDE) of the
first order in time t.

In [3, 4, 5], the focusing (CRWPE) hierarchy in (1 + 1)-dimensions was
given in the form

o (0 "
Ut+8:1:<8:L'+U1) u=0,n=0,1,2,.... (2)

The first few elements of the hierarchies Eq. (2) are given by

(7 + Uy = 0, (3)

U + Uog + 2utly, — uy = 0, (4)
Up + Usy — U9y + Uy + 3 (um)2 — duug + 3uugy + 3uuy =0, (5)

Up + Ugy — U3y + oy — Uy — 9 (ux)2 + 6uuy, — Quug, + duus,+
10uzu9, + 12u (ux)2 — 9ulu, + 6uug, + 4udu, = 0,

(6)

U + Usy — dugy + 6usy — dugy + uy + 15 (um)?’ + 18 (u,]c)2 +10 (um)2
—8uty + 18uug, — 16uus, + dutg, — 40Uz uo, + 15Uz Uz,
+50uu U, — 48u (ux)2 + 30u? (um)2 + 18u2uy — 24u?ug,
+10u2ug, — 16uduy + 10udug, + butu, = 0,
(7)
obtained by substituting n = 0, 1, 2, 3, 4, where u,, = g%ﬁ, u(x,t) denotes
the unknown function depending on the temporal variable ¢t and the spatial
variable z. The resulting (PDEs) are of first order, second order, third
order, fourth order and fifth order respectively, where other equations of
higher order can be obtained by substituting n > 5.
A few novel of nonlinear (PDEs) known as two-mode or dual-mode has
just been described. Researchers have been exploring this problem and have
discovered two-mode nonlinear (PDEs), such as: two-mode (tm) mKdV [6,
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7], tm KdV [8], tm Sharma—Tasso—Olver [9], tm fifth order KdV [10, 11], two-
mode Burger equation (tmBE) [12], tm perturbed Burger (tmPB) [13], tm
KdV Burgers (tmKdVB) [14], tm Kadomtsev Petviashvili (tmKP) [15], two-
mode dispersive Fisher (tmdF) [16], tm Kuramoto—Sivashinsky (tmKS) [17],
tm Boussinesq Burgers (tmBB) [18], two-mode coupled KdV (tmKdV) and
mKdV (tm- CmKdV) [19, 20], two-mode nonlinear Schrodinger (tmNLS)
[21], and tm Hirota Satsuma coupled KdV(tmHSKdV) [22], equations and
different analytical methodologies are used to create the dual-wave solutions.

Among these techniques are: Exp-function method [23], the <%)—expansion

method [24, 25|, the (&)—expansion method [26, 27], the (g—;)—expansion
method [28], the extended hyperbolic function method [29], the tanh-coth
method [30, 31|, the double (%/, é)—expansion method [32]-[34], the Jacobi
elliptic function expansion method [35], the mapping method [36], the sine-
cosine method [37].

Our aim is to study the systems proposed above. Moreover, we will

determine travelling wave solutions by using the new (G,G—_i_A>—expansion

method. The computer symbolic system Maple will be used to perform the
computational work.

el .
2 The New (m)—Expan51on Method
In this section, we describe our new method, namely, the (GQ—J:A) expansion

method for finding travelling wave solutions of nonlinear (PDEs). Consider
the general nonlinear (PDEs), say, in two variables,

P(vavtavmvvttavl’tavxl‘a ) - 07 (8)

where v = v(z,t) is an unknown function, P is a polynomial in v(z,t)
and the subscripts stand for the partial derivatives.

We suppose that the combination of real variables  and ¢ by a complex
variable &

v(z,t) =v(), £=azr—ct, (9)

where a is the wave number and c is the speed of the traveling wave. Now
using Eq. (9), Eq. (8) is converted into an ordinary differential equation

(ODE) for v = v(€):
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d
F (v, —cv',av’, 2" —cav”, a?v"”, ) =0,/= d—§ (10)
Suppose that the traveling wave solution of Eq. (10) can be expressed
as follows:
N A
G// 1
v(§) = ;ai (m) : (11)

where the coefficients a;(i = 0,1,2,...,N),a and ¢ are arbitrary con-
stants, and G = G(§) satisfies the following auxiliary (ODE)

G" + pG' + X =0, (12)
then by the help of Eq. (12) we get
G" / G" 2
(m) = <m) - (13)

where A = Apu; and A are constants, the positive integer N can be deter-
mined by using homogeneous balance between the highest order derivatives
and the nonlinear terms appearing in ODE (10).

Substituting Eq. (11) into Eq. (10), using Eq. (13) repeatedly, and

" /L

setting the coefficients of the each order of (%) to zero, we obtain a
set of nonlinear algebraic equations for a;(i = 0,1,2,..., N),a, c and p. With
the aid of the computer program Maple, we can solve the set of nonlinear
algebraic equations and obtain all the constants a;(i = 0,1,2,...,N),a and
c.

Using the general solution of Eq. (12), we have the following solutions

Family 1. When p < 0,

( el > _ /=12 (Cy cosh (/=fi (€ + h)) + Casinh (V=5 (€ 4+ h)))
G+ A C1 81nh(\/ju(§+h)) + Oy COSh(\/—_M(§+ h)) 5

case (i). If Cy #0, Cy =0,

(G,G:A) = V=ptanh (V=g (£ + 1),

case (i). If C1 #0, Cy =0,
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(G%J — V/=pcoth (vV=pi (€ + 1)) .

Family 2. When p > 0,

< ¢ ) _ VA (Creos (VA + 1) + Cosin (Vi (€ + 1))
G+ A C1 sin (\/ﬁ(f + h)) — Ca cos (\//7(5 + h)) ’

case (i). If Cy # 0, C1 =0,

G/I
() = VAt (Vi m).
case (ii). It C1 #0, Cy =0,

() = Ve (a(e+m).

Where h is constant of integration.

3 Formulation of the two-mode equations

To establish the two-mode (CRWPE), we first rewrite the (CRWPE) Eq.
(4) with dual nonlinear terms as

up + (u2 — u)x + w9, = 0, (14)
where
N (u,ug,...) = (u2 — u)x, (15)
L (urz) = U2g.

We next combine the sense of Korsunsky [1], as proposed in Eq. (1), and
the structure of the (CRWPE) Eq. (14), to propose the nonlinear dispersive
equation,

Uy — 8% Ugy + (% - as%> {(v* =) }+ <§ - ﬂsa%) (uzz) =0, (16)
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« is the nonlinearity parameter, § is the dispersive parameter, and s is
the phase velocity. We next proceed to establish a two wave mode (TCR-
WPE). In a manner parallel to the analysis presented earlier, we formulate
a two-mode (TCRWPE). We first rewrite Eq. (5) with four nonlinear terms
and one linear term as

up + (u3 — 2l 4+ u+ 3uux)x — 2Uoy +use = 0, (17)
where
N (uytg,...) = (u3—2u2+u+3uux)x, (18)
L (umc) = U3y — 2U2s.

We next combine the sense of Korsunsky [1], as proposed in Eq. (1), and
the structure of the (CRWPE) Eq. (17), to propose the nonlinear dispersive
equation,

0 0 0 0
Ut —S uzx+<at ozsax) (u 2u” +u + 3uux)x+<8t ,BS&B) (usy — 2ug,) =0,
(19)

« is the nonlinearity parameter, 3 is the dispersive parameter, and s is
the phase velocity.

3.1 The two-mode (CRWPE)

In this section, we aim first to apply our new method for solve Eq. (16).
Substituting u(z,t) = u(&),§ = ax — ¢t in Eq. (16) and integrating
twice gives

(¢ —a®s* + ac + a®sa) u(€)—(ac + a®sa) (u(€))?—a? (c + asp) %u(ﬁ)—i—k =0.
(20)

Balancing the order of the nonlinear term u? with the highest derivative
u’ gives 2N = N + 1 that gives N = 1.
By the use of Eq. (11), we present the solution of Eq. (20) as:

u(ﬁ) =ag + a1 (m> .
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Substituting Eq. (21) in Eq. (20) and using Eq. (13), collecting the
" ?
coeflicients of each power of GQ—JFA> , 0 <1< 2, setting each coefficient to

zero, and solving the algebraic equations by Maple we get,

a® (—528—a+ﬁ+5) + 2aaq (sa,@—s—%ﬁ—k%a)—l—sa% (1—a2)
2a (8 —a)(a—ay)
as (af — aay)
a— ay '

a; = a,C= —
Using Eq. (21), in the solutions of Eq. (12), we get

Family 1. When pu < 0,

a1y/—p (Cycosh (y/—p (§ + h)) + Csinh (V= (£ + 1))
Cysinh (v/—p (§ + h)) + Cacosh (v/—p (€ + h)) ’

case (i). If C2 #0, C1 =0,

w1 (&) = ao +

uz (§) = ao + a1v/—ptanh (V=p (€ + 1)),
case (ii). If C1 #0, Cy =0,

ug (§) = ao + a1v/—pcoth (v=p (£ + h)).
Family 2. When p > 0,

ai\/i (Cl cos (\/,U, &+ h)) 4+ Cysin (\//7 &+ h)))
Cisin (i (€ +h)) — Cacos (Vu(£+ h))

case (i). If Cy # 0, C1 =0,

)

ug (§) = ap +

us (§) = ao — ary/ptan (Vi (€ + h)),
case (ii). If C1 #0, Cy =0,

u (€) = ap + ary/ficot (Vi (€ + b)),

a2(76237a+6+s)+2aa1 (saﬁfsleJrla)JrsaQ(lfaz)
where ag = Za(Bfa)(afaj 2 ! ,

€ = ap 4 (maszaa)

a—a1
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pn<0

Figure 1. Above of figure are represents kink soliton solution of the exact
traveling wave solution of ug(x,t) for the parameter
(h=p=s=a1=1,c1=1,ca=a=2and a =0.5).

w<0

Figure 2. Above of figure are represents singular-kink soliton solution of
the exact traveling wave solution of us(z,t) for the parameter
(h=p=s=a1=1,c1=1,ca=a=2and a =0.5).
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w>0

Figure 8. Above of figure are represents singular-kink soliton solution of
the exact traveling wave solution of us(z,t) for the parameter
(h=F=s=a1=1c1=1,ca=a=2and a=0.5).

3.2 The two-mode (TCRWPE)

In this section, we apply the our new method for solve Eq. (19).
Substituting u(x,t) = u(§),£ = ax —ct in Eq. (19) and integrating twice
gives

225

(02 —a2s%2 —ac — a25a) u(§) — (ac + a2sa) ((u(ﬁ)):)’ -2 (u(f))2 + 3au(§)d%u(§))

+a? (c+ aspB) (2d%u(§) - aj—;u(g)) +k=0
(22)
Balancing the order of the nonlinear term u? with the highest derivative
u” gives 3N = N + 2 that gives N = 1.
By the use of Eq. (11), we present the solution of Eq. (22) as:

wl(€) = a0+ a (GGTA) | (23)

Substituting Eq. (23) in Eq. (22) and using Eq. (13), collecting the

(2
coefficients of each power of <%) , 0 < i < 3, setting each coefficient

to zero, and solving the algebraic equations by Maple we find that solution
exists if 5 = a,
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set (1).

c=a <—2ua2 — % + %\/144u2a4 — 144apsa? + 24a2p — 12sa + 3652 + 1) )

set (2).

c=a (—%,an — &+ £1/9pa* — 36apsa® + 6a?p — 12500 + 3652 + 1) .

set (3).
2saa’® + 2ca

ag = ————
3a (asa + c)

\/3\/a (asa +c) (aspat + cpa® — sa? (s — Ta) + Fea + c2)
+ ;
3a (asa + c)
ap = a,c=c.

Putting the set (1). into Eq. (23), we get

Family 1. When p <0,

ur (€) = 2 N 2a+/—p (C1 cosh (v/=p (€ 4+ h)) + Cosinh (v/—p (€ + h)))
1 3 Cisinh (y/=p (€ + h)) + Cacosh (V—p (£ + h))

case (i). If Cy #0, Cy =0,

i

us (€) = 3 +20v/pitanh (VR (€ + 1))

case (ii). If C1 #0, Cy =0,

us (€) = 5 + 2av/Tpicoth (V7 (€ + 1)

Family 2. When p > 0,

wa (€)= 2 4 20V (Creos (VE(E+ 1) + Casin (VE (€ + 1))
4 3 Cisin (/i (§+h)) — Cacos (i (€ + h))

i
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case (i). If Cy #0, Cy =0,

2
us (§) = 37 2a\/ptan (/u (€ + h)),
case (ii). If C1 #0, Cy =0,
2
ug (§) = 3T 2a\/peot (u (€ +h)),
where £ = ar—a (—2,ua2 — 1+ 3/144p2at — 14dapsa® 4 24a2p — 12sa + 3652 + 1) t.
Putting the set (2). into Eq. (23), we get

Family 1. When p < 0,

_ 2, ay=a(Crcosh (V= (€ +h) + Casink (V=7 (¢ + 1))

37 Crsih (V=p(E+ )+ Crcosh (V- (€+h)
case (i). If Cy # 0, C1 =0,

uz (§)

us (€) =+ + ay/Zpitanh (v (€ + 1)
case (ii). If C1 #0, Cy =0,

up (€) = 3 + av/=picoth (V= (£ + ).
Family 2. When p > 0,
2 a/n (Cycos (VB (E+h)) + Casin (Vi (€ +h)))

u1 (§) = 3 * Cisin (u (€ +h)) — Cacos (Vr(E+h))

case (i). If Co #0, C; =0,

unn () = 5 — ayFitan (Vi (€ + h).

case (i). If C1 #0, Cy =0,

s (€) = 5 + aFicot (V (€ + 1),

where £ = az—a (—%,ucﬂ — 1+ £\/9pa* — 36ausa® + 6a2p — 1250+ 3652 + 1) t.
Putting the set (3). into Eq. (23), we get
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Family 1. When p < 0,

ay/=p (Crcosh (/=p (£ + h)) + Casinh (V—p (£ + 1))
Cysinh (V=p (§ + h)) + Cycosh (v/=p (£ + h)) ’

case (i). If Cy # 0, C1 =0,

u13 (&) = ag +

u14 (§) = ao + ay/—ptanh (v=p (€ + 1)),
case (ii). If C1 #0, Cy =0,

uys (€) = ag + ay/—=pcoth (V=p (£ +h)) .
Family 2. When p > 0,

ay/f (Cy cos (i (§+ h)) + Cosin (/i (€ + R)))
Cisin (y/i (€ +h)) — Cycos (Vi (§ + h))

case (i). If Cy # 0, C1 =0,

)

u16 (§) = ao +

ur7 (§) = ap — ay/ptan (/i (€ + b)),
case (ii). If C1 #0, Cy =0,

u1g (§) = ao + av/pcot (Vi (€ + 1)),

2saa? +20a+\/§\/a(asa+c) (asua4 +cpad—sa? (s— %a)—i—%ca—i—@)
3a(asa+c) ’

where ag =
& =ax —ct.

n<0



New two-mode of second and third order Clannish Random Walker’s Parabolic equations 229

Figure 4. Above of figure are represents kink soliton solution of the exact
traveling wave solution of ug(z, t) for the parameter (h =a =1,s = 3 and a = 0.5).

uw<0

Figure 5. Above of figure are represents singular-kink soliton solution of
the exact traveling wave solution of ug(x,t) for the parameter
(h=a=1,s=3and a =0.5).

w>0

Figure 6. Above of figure are represents singular-periodic soliton solution
of the exact traveling wave solution of ug(x,t) for the parameter
(h=a=1,s=3and a =0.5).
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uw>0

Figure 7. Above of figure are represents singular-periodic soliton solution
of the exact traveling wave solution of ui7(z,t) for the parameter
(h=a=a=1and s=15).

4 Conclusion

In this work, we established two wave mode equations, namely the two-mode
(CRWPE) and the two mode (TCRWPE), which we believe that these two
equations are introduced to the first time.

The new (G,G—J:A>— expansion method has been successfully implemented
to find the new two traveling waves solutions. The results show that this
method is a powerful Mathematical tool for obtaining exact solutions for our
equations. It is also a promising method to solve other nonlinear (PDEs).
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