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LANCZOS DERIVATIVE VIA RUFFA-TONI’S EXPRESSION FOR
A DEFINITE INTEGRAL AND SOLUTION OF
NON-HOMOGENEOUS DOUBLE FREDHOLM INTEGRAL
EQUATIONS
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ABSTRACT. An exact series representation of a definite integral is studied in the
literature. This is an important result for it may be used to provide the series
representation of a typical definite integral which allows a deduction of the Lanc-
zos derivative [classical differentiation via integration|. Further we use Lanczos
derivative techniques to solve the nonhomogeneous single and double Fredholm
integral equations.
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1. INTRODUCTION

Ruffa-Toni [12] has given an exact series representation of a definite integral. In
this paper, we prove that it is applicable in a deduction of the Lanczos derivative
[classical differentiation via integration].

Ruffa-Toni [12] obtained the following interesting formula for a definite integral:

b 0o 2" —1
(1) / gtydt = (b—a)> 27" > (=1)" g (a+m(b—a)2™")

In (1), we apply for the case g(t) = tf (t + o) ,b = —a = € to deduce the Lanczos
derivative[1, 2, 3, 4, 8, 9, 10, 14, 16] :

€

(2) (@) = tim oo [ ¢+ ao)

that is, classical differentiation via integration.
In addition, we present an evaluation of Lanczos derivative techniques for solving
the Fredholm integral equations.

2. LANCZOS FORMULA
From (1):
(3)
2" —1

/e tf (L‘ + I()) dt = €2 i gl-n Z (_1)m+1anf (xO + Ean) . Qmn = m217n_1’

n=1 m=1
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and now we shall accept that e < 1 to apply in (3) the Taylor expansion:

(4) f (@0 + €Qun) = [ (w0) + €Qunf’ (w0) + O (€)
then (3) implies the expression:

(5) /E tf (t+zo)dt = EAf (z0) + €Bf (20) + O (),
such that:

2"—1 oo 2"—1

(6) A::532L”‘§:(—1VH4an, B=3 2" (-1)"MQ,.
n=1 m=1 n m=1

=1
It is easy to obtain the values:

(7)
2" —1 2" —1 2" —1
Z (_1)m+1 — 17 Z (_1)m+1m — 277,717 Z (_1)m+1m2 — 277,71 (2n _ 1) )
m=1 m=1 m=1

which gives A = 0, B = 2 and therefore (5) implies (2), q.e.d.
Remark: Rangarajan-Purushothaman [11] used the Legendre polynomials [13, 15]
to study the Lanczos derivative for higher orders, thus the following relation gener-
alizes the expression (2):

: @i+ 1) [ [t .
(8) fwm@:mpaﬁr»%g J)ftrao)dt, j=12...

e—0

fje tf (t + IO) dt = 62 Z?zozl 21771 237:;11(_1)m+1c2mnf (IO + Gan) ) an = mzlfn_
1.

3. LANCZOS DERIVATIVE AND SOLUTION OF THE NON-HOMOGENEOUS FREDHOLM
INTEGRAL EQUATIONS

The Fredholm integral equations are solved by the theory of separable kernels,
method of successive approximations, classical Fredholm theory and symmetric ker-
nels (see in [7]). Here we use the Lanczos theory to solve the nonhomogeneous
Fredholm integral equations.

Theorem 3.1. If there exists the constants

9
o y b
Cy= / pq(H)u(t)dtVg =1,2,..., where, pq(t) = lim —K(z,t) and / Pq(t)dt = Dy.

z—0 Oxd
Again consider that

t=b 1 t=b
e S e )

t=a t=a

/ m/%@w:%@

Then Yz € [a,b] such that b > a > 0, the non-homogeneous Fredholm integral
equation

and

b
(10) u(z) = F(x) + )\/ K(z,t)u(t)dt,
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has the solution due to the differential equations

() = () 4,

and
dat1 da+1
(11) Jpari @) = oo Fa).
where, for any A # ﬁVq =1,2,..., there exists following constants
o1 —o2+-+ (=1)1 g, (—1)1 /b dF
= —— g (t)dt
G = a1, (=N 1)iDy) J, dwr Vet

Proof. Consider the non-homogeneous Fredholm integral equation (10) and in both
sides of it replace = by x + s and again multiplying by n-degree polynomials P, (f)
in these sides and thus integrating these sides with respect to s from —e to €, we
write it in the form

(12)

‘[f(x+$ ()dS‘}KﬁFu+Q ( (B+A/){/‘fo+st ( )d%}(ﬂdt

€ €

On making some manipulations in the formula (12), we find that
(13)

/ 1 w(z-+es) Py(s)ds = / 1 F(2+¢5)P(s)ds+) / ’ { [ 11 K(z+ es,t)Pn(s)ds} u(t)dt.

-1 -1

Then in the equation (13) on applying Taylor’s formula, we get
> dF e . > e [t
(14) 3 Ty [ P > G [ Py

k=0
)\ooem b 1 . ] om )
’ ;gg)”“!]c {y/:ls Fa(s) Sghﬂnff(w,t)}qLu) t.

It is remarked that the n-degree polynomials P, (s)Vn = 0,1,2,3,..., defined by
Gaussian hypergeometric function due to [5, p. 158], are given as

~ (2n)ls” n —n+11 1
Pn(s)—W2F1 277,2—%? )

which follows a formula given by [5, p. 159]
(15)
! 2" ()T ((1+k)/2)D((2+k) /2)T (n+3/2)
/ s¥P,(s)ds = { : when n + k even ,

Cnr DT ((k—n+2)/2)T2((n+1) /2L ((k+n+3)/2)

1 0, when n + k odd.
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Then on using (15) in (14), we get

R N +)/20(2+4)/2) &
(16) klggo; w“(x)p((j —n+2)/2)L((+n+3)/2) 5!

~ & (@) D(A+5)/290(2+4)/2) ¢
poeos—dal (= n+2)/2T((G + 1 +3)/2) j!

N R NI .
AN TG -+ 2 DNG T+ 972 [ gt 0w

Now in (16) consider that k +n = p+n = m 4+ n = g (even number), then on
equating the coefficients of €7 and find that
d d b oo
(17) @U(l‘) = ﬁF(‘/E) + )\/a {%K(ZE, t)} U(t)dt
Again making an appeal to the conditions (9) in the equation (17) we find the

differential equations in (11). Further making an appeal to conditions given in the
Theorem 3.1 and by Eqns. (9), we obtain

bagap
(18) Cy=01—0o2+ -+ (=)o, + (—1)‘1/ qu(t)dt + A\(=1)C,D,,.
a

The Eqn. (18) gives us the constants given in the Eqn. (11).
Finally, on successively integrating both sides of the first differential equation of
(11), we obtain the required solution of the Fredholm integral equation (10). O

4. EXAMPLES ON SOLUTION OF NON-HOMOGENEOUS SINGLE FREDHOLM
INTEGRAL EQUATIONS

By this theory and methods presented in Section 3, we introduce some examples
of non-homogeneous Fredholm integral equations to get the solution of them:
Example 1. Consider the Fredholm integral equation

b
(19) u(zr) = F(x) + )\/ (1 — xt)u(t)dt,

to solve it whenever = > 0.
Solution. Making an appeal to the Theorem 3.1 in (19), we find the differential
equations

d d d2 d2

Due to (19), (20) and [’(—t)u(t)dt = C, to get

C= /ab(—t)u(t)dt = {u(t) (—?) }:_Z - /ab u'(t) (—?) dt.

Here let th% _Cé)nstant
{u(t) (7%)} = 1, then we find
t=a

I AC
C’:u+§/ tQF’(t)dt—k?(b?’—a?’).

a
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So that

= K + ! / ’ 2 F'(t)dt
[ 3e-a) A=)k
provided that 1 — 2 (b3 — a®) # 0.
Integrating both sides of first equation in (20) with respect to x, we get
(21) u(z) = F(z) + \Cz + E,

F is an arbitrary constant.
Now in (20) putting « = 0, we find

E = u(0) — F(0).
Hence, the required solution is
u(z) = F(x) + \Cx + u(0) — F(0),

were, for 1 — % (b3 — a3) #£0,
(22)

b 2 2
C— H + 1 / t?F'(t)dt and p = {u(a)% — U(b)%} :

(=30 -0
Example 2. Consider the Fredholm integral equation
b
(23) u(z) = F(x) + )\/ e tu(t)dt,

to solve it, whenever x > 0.
Solution. On making an appeal to the Theorem 3.1 in (23), we get

(24)
@) = L F(x) +2C,, where C, = I ﬁ/ = (t)dt—/b ~tu(t)dt
dea P T e where b = 18 ox Y o ae v :

Letting the constants

_ t=b t=b
T T e S UL ST

=a t=a

then by (24) we obtain
b d b
Cq:ﬂ1+u2+,ll3—|—...+,uq+/ef—qF(t)dt—)\Cq{ef —eia}.

M1+ p2+ p3+ e+ g

B IS TR v +{1+A{e—b ea}}/ i

- F(t)dt
provided that
(25) 1+ {e*" - e*a} £0.

Therefore due to (24) and (25), for 1+ A {e7® — e~} # 0, we find an interesting

equation
d? d?
dxqu(x) = %F(x) + ACy,

where

C:M1+M2+N3+“'+Mq+ /
/ {T+X{et —e}} {1+A{€"’—€ “}} d

tq F(t)dt

207
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provided that
(26) 1+ {e_b - e—“} £0.

Now integrating both sides of (26) successively with respect to x, we have
%u(x) = j;(%F(I) + Cyz + E4
= j;—fgu(x) = Cg:q—iZF(:E) + Cqé + Bz + By
= %u(x) = j;q—_iF(ﬂc) + ng—? + Elg + Esx + Ej
— w(@) = F(2) + Cy% + Erfigy + Baiogy + -+ + B iz + By,
(27) Here, E1, Ey, ..., E4, are arbitrary constants.
In both sides of equation (27) on putting 2 = 0, we get
(28) u(0) — F(0) = E,.
Therefore under the condition, 1+ A {e‘b — e‘a} # 0, we find the required solution
in the form

q
u(e) = F@) + ey [u1+u2+u3+---+uq+nq]%
zd 1 xd72
+E1(q—1)! +E2(q—2)! +-- 4+ Ejm1z +u(0) — F(0),
where,
b
(29) Ng = /a e ﬁF(t)dt.

Example 3. Consider the Fredholm integral equation

b
(30) u(z) = F(x) + )\/ sin(x + t)u(t)dt,

to solve it whenever = > 0.
Solution. Applying above methods in (30), we obtain
d1 d?
Eu(x) = EF(.’L') =+ /\C’q,
where,
o1 [P b qr
(31) Cy = lim —/ sin(z + t)u(t)dt = / sin (t + —) u(t)dt.
ozt J, a 2

z—0 Jxd

Again let

{—u(t) cos (t + %) }Zb = p1, {—u(’)(t) cos (t + w» = s,
(32) :

{—u(")(t) cos (t + @) }H P {—u(q_l)(t) cos (t + g) }t:b = pq.

t=a
Therefore by (31) and (32), we get

b
Cy=pr=prt oo+ ()7 gy 4 (1)1 [ ul(0)sin(e)ds

a
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b d4
= Cy=p1—p2t-+(=1)1p, + (—1)q/ {ﬁF(x) + A(Jq} sin tdt.

a

_pmppte A (21 (=11 /
Co= {1+ (-1 )q)\(cosbfcosa)}+{1+( 1)‘1)\(cosbfcosa} Smt at,

provided that
(33) {1+ (=1)?\(cosb — cosa)} # 0.
Again by (31), we have

pd—1 rd—2

= u(x) = F(x) + A\Cy +E1( —1)! +E2(q—2)!

=+ - —|—Eq,1l‘+Eq.

On putting z = 0, we get
Ey = u(0) — F(0),

hence for 1+ (—l)q{cosb — cosa}X # 0, the required solution is

pd—1 rd—2
u(z) = F(x )—I—)\C’q +E1(q_ ol +E2(q—2)! +--+ Eqo1z 4+ u(0) — F(0),
where,
(34)
_pmpte 4 ()T, (-1)? /” 4
Co = {14 (-1)9X\(cosb—cosa)} {1+ (—1)i\(cosb—cosa)} /, Smtdt‘lF(t)dt'

5. SOLUTION OF NON-HOMOGENEOUS DOUBLE FREDHOLM INTEGRAL EQUATIONS

In this section, we apply above theory and methods (see also in [1, 8, 16]) of

Sections 3 and 4, and solve the nonhomogeneous double Fredholm integral equations
which are consisting of double integrals [7].
Example 4. If xq,29;t; and to are all positive such that a < x1 + 29 < bja <
t1+ta <bjb>a>0. Also u: u(xy,x2) = u(x1 + x2) Va < x1 + x2 < b; otherwise,
zero and F : F (x1,x2) = F (1 + 22) Va < x1 + x2 < b; otherwise zero. Then the
double non-homogeneous Fredholm integral equation

(35 w(wnm) = F(21,22) + A / / ertm =ty (1) | 1) diydis,

is solvable, whenever x1 + x5 > 0.
Solution. Let 21 + 29 = X = a < X < b and due to Liouville theorem studied in
[7], the Eqn. (35) may be written by

b
(36) u(X) = F(X) +/\/ eXttu(t)dt
Therefore on setting the constants

= {00+ 0e ) 2 = {0+ 0} = {00+ e}

and making an appeal to the Theorem 3.1, via (36) we find

b
(37) u(X) = mF( )+ ACy, where C;, = / e ttu(t)dt.

dX‘I

t=b

t=a
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Again due to (37), for [1 = A{(a+qg+1)e™® — (b+q+1)e"}] # 0, we obtain

p A py g
l-X(a+qg+1)e2—(b+qg+1)e b}
1 b, g
+ e (t+q)-=F(t)dt.
[1—A{(a+q+1)e—a—(b+q+1)e‘b}]/a ( q)dtq ®)
Finally, integrating both sides of (37) successively with respect to X and then

using the formula (38), we derive the solution of double Fredholm integral equation
(35) in the form

(38) Cq=

A
M-XM(a+qg+De*—(b+q+1)e?}] [
« (w1 + x2)? o (z1 +22)" " (1 + 22)"°

q! (¢ —1)! (¢ —2)!
whenever 1 + x9 = 0, subject to the conditions

M=M(a+g+1e®—(b+qg+1)e P} #0,
and

u(zy,xe) = F (21 + 22)+ NI1+M/2+"'+M51+77¢/1]

+Ey

+H By (21 + 2)+u(0) = F(0),

/ ’ —t de
(39) nq:/a e (t—i—q)%F(t)dt.

Example 5. If x1,x9;t1 and ty are all positive such that a < x1 + 9 < bja <
t1+te <bb>a>0. Also u:u(z1,22) = u(x1 + x2) Va < x1 + 22 < b; otherwise
zero, F': F (x1,29) = F (21 + x2) Va < 21 +x2 < b; otherwise zero. Then the double
non-homogeneous Fredholm integral equation

(40) U (:L’l,xz) =F ((L‘l,l‘g) + )\// sin ([L‘l + X9 + (tl + tg)) U (tl + tz) dtydts,
is solvable, whenever x; + x5 > 0.

Solution. Suppose that z1 + 22 = X = a < X < b, then the Eqn. (38) may be
written by

b
(41) u(X)=F(X)+ )\/ sin(X + t)tu(t)dt.

Now letting the constants

{u(t) (tsin <t+ w> + sin (t + %)) }tb =,
{u<1>(t) (tsin (t + @) + 2sin (t + w» }: =phy.. .,

(42) {0 0) (¢sint +qsin (1 + 7)) }t:b =l

t=a

then due to (40), there exists a constant

(43) C, = /b sin (t + %) tu(t)dt,

a
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whereon applying (40), we get
P—rht o+ (=)
[1—(-1)2M\ acosa — sina + sinb — bcos b}]
+ (-1 /b(t in t+q cost) a
sin t+q cost) —
[1—(-1)2\{acosa+ (g+1)sinb—bcosb— (¢ + 1)sina}] J, ¢ dte
Finally, we derive the solution of the double Fredholm integral equation (40) in
the form
(45)

(44) Cq=

F(t)dt.

_ (.231 + xg)q (Il + :Ez)q_l ($1 + l‘g)q_Z
u(1’171’2)—F(I1+12)+>\Cq q! + By (q—l)! + Es (q_2)!

+ -+ Eq_1 (x1 + x2) + u(0) — F(0), whenever 1 + z2 > 0.

6. SPECIAL CASES

Special Cases 1. In example 4, setting a = 0,b = 1,u(0) = 0, u( )=1,F(t) =
12, 1)(0) — u(2)(0) S u(qfl)(o) =0 and u(l)( 1) = (2)( Y=o = wle—1) ( )=
0.
In Eqn. (11), it is said that “Zu(t) is proportional to 4. F(t).
Also jt‘i, (t) = £:t2 = 0¥g > 3.
Then in this case we get ¢ = 2.
-1
Again, we find gy = [-8e™' + 6] , ) = *2671,}1,; =0Vq>2,and Cy = {1 + M}

Therefore, the Eqn. (39) becomes

_Be-l
(46) u(z1,x2) = {1+[1)\[§)[3546]1H}<I1+I2)2+(z1 + z9) En.

Using MATLAB, we plot the graph of Eqn. (46):
3D Plot of w (1, z2)

°%.00s

Graph 1 [Distribution of u (z1,z2) when A = 0.5 and E; = 0.7 |

Special Cases 2. In example 5, setting a = 0,b = 7w, u(0) = 0,u(w) = 1, F(¢t) =
2, uM(0) =u®(0) =--- = w@D(0) =0 and vV (1) = u@ (1) = - - = wle V(1) =
0.
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Also jtqq (t) = 3= 4T42 — OVg > 3.

Then in this case we get ¢ = 2. Again, we find Cy = [—%} L= STy =
0vq > 2.

Therefore, the Eqn. (45) becomes

(47) u(xl,xg)z{l e ;” 5

Using MATLAB, we plot the graph of Eqn. (47):

} (z1 + $2)2 + (1 + z2) E1.

3D Surface Plot of u(x1,x2) with A =0.5, F; = 0.7

Graph 2 [Distribution of u (x1, z2) when A = 0.5 and E; = 0.7 |

7. CONCLUSIONS

On making an appeal to Sections 3, 4 and 5, it is concluded that via the Lanczos
derivative techniques [1, 8, 16] any non-homogeneous Fredholm integral equation is
solved, and the solution is found in terms of the polynomials. Hence any scientific
problem converted into the non-homogeneous Fredholm integral equation is further
transformed into polynomials via the techniques applied in Sections 3, 4 and 5, for
computational purposes. In Appendix A, we present algorithms of the MATLAB
programs of graph 1 and graph 2 .
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APPENDIX A
1. THE MATLAB PROGRAM TO DRAW GRAPH 1 OF THE SPECIAL CASE I

clc; clear; close all;
% Define parameters
lambda = 0.5; % Given lambda value
E1=0.7; % Given E1 value
% Define function
[X1, X2] = meshgrid(-10:0.5:10, -10:0.5:10);
factor = (1 — (pi * lambda) / (2 * (lambda * pi - 1) ));
U = factor * (X1 +X2). A2+ E1 * (X1 + X2);
% Plot 3D surface
figure;
surf(X1, X2, U);
xlabel(’x_1");
ylabel(’x_2");
zlabel("u(x_1, x_2)’);
title(’3D Surface Plot of w (z_1,2_2) with \ lambda = 0.5, F_1 = 0.7 );
colormap jet;
shading interp;
colorbar;
grid on;

2. THE MATLAB PROGRAM TO DRAW GRAPH 1 OF THE SPECIAL CASE 2

clc; clear; close all;
% Define parameters
lambda = 0.5; % Given lambda value
E1=0.7; Given El value
% Define function
[X1, X2] = meshgrid(-10:0.5:10, -10:0.5:10);
factor = (1 — ( pi * lambda) / (2 * (lambda * pi - 1)) );
U = factor * (X1 + X2)."2 + E1 * (X1 + X2);
% Plot 3D surface
figure;
surf(X1, X2, U);
xlabel(’x_1");
ylabel(’x_2");
zlabel("u(x_1, x_2)’);
title(’3D Surface Plot of u (z_1,z-2) with \lambda = 0.5,E_1 = 0.7 ");
colormap jet;
shading interp;
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colorbar;
grid on;
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