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Abstract

Direct solution of Higher of ordinary differential equations have yet to gain more atten-
tion and be explored extensively despite it’s vast presence in sciences and engineering.
This study employs hybrid block methods within a step interval with higher order and
good precision to directly solve third-order problems of ordinary differential equations
without resulting in a reduction approach. The procedure used in constructing the
method is by interpolating the trial function at [z,], collocating every other point on
the grids within the interval [0,1]. Block mode is employed in implementing the new
method, which simultaneously evaluates the continuous schemes of the approximations
at all points within the integration interval. The off-grid points introduced aim to im-
prove the method’s accuracy while circumventing the Dahlquist barrier within a small
step number. We established the proposed method’s characteristics, which include or-

der, zero stability, and convergence. Application of the methods to third-order problems
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in sciences and engineering is given to assess its significance.
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1 Introduction

In this paper, consideration was given to the direct numerical approximation of third
order Initial value and boundary value problems of ordinary differential equations. The

direct methods for the solution of

y"'(t) =y, v.y") (1)
with initial conditions
y(to) =0, ¥'(to) =¥ (0), ¥"(to) = y"(0) (2)
or boundary conditions
a1(yto), ¥'(to), ¥"(t0) =ya,  g2(y(tn), ¥'(tn), ¥'(tn)) = (3)

has been extensively studied by several authors as appeared in severally literatures [1-
5]. The direct method or approach has shown advantages accuracy and speed over the
reduction approach to a system of first order, which has a human computational burden
[6-9]. All the above authors have either limited their research to applying their proposed
methods to solve either third order initial or boundary value problems but not both.

While scholars like Abd El-Sala et. al. [1], Akram [4] and Al-Said & Rehman [6],consider
different spline methods for the solution of third order boundary value problems of
ordinary differential equations,it was observed that the accuracy of the method was
small compare to the research work of Adoghe & Omole [3], Awoyemi et. al. [7], Reem &
Fudziah [18] who worked on the linear multistep methods for the solution of third order

intial value problems of ordianry differential equations.
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The hybrid block method has been seen to be one of the numerical methods that perform
favourably well because it combines the block method’s advantage and overcomes the
zero stability barrier in the linear multistep method according to Adesanya et. al. [2] and
Adoghe & Omole [3]. Third-order ordinary differential equations are found in science
and engineering, such as the sandwich boundary layer and laminar flow beam, thin-film
flow, the motion of rockets, the study of stellar interiors, draining and coating flow, fluid
dynamics and mechanics. The applications of these problems have critical applications in
engineering and sciences. The introduction of numerical methods became necessary since
it is not all ordinary differential equations that can be solved analytically. According
[16], their are three primary approaches for solving Boundary value problems of ordinary
differential equations which are the finite-difference methods [10],shooting method and
methods that are based on approximating the solution by combination of trial functions
[19]. Other approaches include but are not limited to variation iteration method (8],
Adonian decomposition, Spline techniques [1, 4, 6], homotopy perturbation method[5],
multistep methods[ 16, 17,20] , and modified Adomian decomposition techniques. Special
attention were given to differential integral equations [10, 11, 15] where the precision and

efficiency of the methods are of great importance.

2 Construction of Hybridized Block Method

Our interest is obtaining the approximate solution of y(¢) at the grid point ty < t1 <
... < ty within the interval of integration [tg,t,]. In deriving the formula, assume y(t)
to be approximated within an interval [t,, ¢,+1] by the given polynomial ¢(#)

ct+i—1

y(t) =q(t) = Y ot" (4)
r=0

where ¢, € R are coefficients of the continuous scheme which will determined by collo-
cating at some selected grid points and ¢ is continuously differentiable. The collocation
points is represented ¢ while 7 is for the interpolation points. Since the polynomial must

pass through the points (Zn, yn), ($n+17 ynJrl),
5 5



136

Senewo Emmanuel Olorunfemi, Muhammed Raji, Laxmi Rathour,
Vinay Singh, Lakshmi Narayan Mishra and Vishnu Narayan Mishra

(a;n+§,yn+%), (wn+g,yn+%), (xn+%7yn+%), (Tn41,Yn+1), we demand the following i + ¢

equations must be satisfied.

Y(tn) = yns Yt = Y0y Y (t0) =Yns  forr = Uit 1‘=07%»§7%§»1
c+i—1
fy gy =at)= Y (r=1)(r —2)st" (5)
=0
Equation (4) and (5) is expressed in matrix frorm
TA=B
given as
1 ¢, 2t t 5 t9 th th I ao 1 T Un
0 1 2t, 3t2 43 5th 6t> 7t 8t a y
0 0 2 6t, 122 20t3 30td 42t 565 as Y
0 0 0 6 24, 60t2 120t 210t4 336t> as f
0.0 0 6 24t 60ti+% 120ti+% 210ti+% 336752+é ar | = | fur2
0.0 0 6 24, 60ti+% 12083 +2 210ti+% 336> iz as for2
0.0 0 6 24t 60ti+% 120ti+% 210ti+% 336t2+% ag foys
0.0 0 6 24,4 60ti+% 120ti+% 210ti+% 336ti+% az fnet
[0 0 0 6 24,0 6067, 12065, 2106, 336t5,, | L 98 | | fatr

After solving for the values of a,, where n(3)1, & stands for % for the method. Substi-

tuting = x, + rh, We now have the polynomial in (4) now written as

qtn +7h) = ao(r)yn + har(r)yl, + hP2as(r)y” + h3 (BO(T)fn + /3% (T)fn+% + B% (T)fn+§
+03 (T)fn+g + B4 (T)fn% + B1(7) frs1) (6)

where h is the step size and ao(r), a1 (r), aa(r), Bo(r), B1(r), B2(r), Ba(r), Ba(r), B1 are
5 5 5 5
continuous coefficients of (6). Solving for the unknown coefficient and substituting their
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values into the continuous scheme (6), and evaluating at all points except ¥, we obtain
the proposed hybridized one step methods as follows:

B nl el ,,+h3( B920f 199f, 1 . 173f, 8 1931f,,2  883f, 4 N 139fn+197)
Ynty T UnTRGY 50 5040000 201600 360000 2520000 5040000 ' 5040000

$17fn  fagr 307Fair  122f,.s 38f..2  89f, .4 1fn+1,>)

78750 5625 39375 + 39375 7875 78750 5625 |

2 2
Ynt2 = yn+hgy’+h2%y”+h3<

5, .9, o a(7safe M6UI9f,1 423f,s 21875 1539f,.s o3,
Untd T Yn Thpy HRTGYT <80000 560000 56000 280000 560000 560000@)
4, o8 g (TI2f,  2336f 1 TOAf s 8f 4 32fi2 3op,
Ynid = YnthoydhTogyt Ak (39375+ 39375 T 39375 1575 5625 39375) (10)
1 233fn  SVfurr  Shayz 153 Shas 1if,
vnir = ynthy' £y b (8064 8064 4032 1032 1152 ' 8064 ) (1)

The Hybridized method above need to be completed by evaluating ¢'(¢) and ¢”(¢) at all

points except at y,, and y,,. The resulting formulas is given by

L, 1231f,  803Sniy lary TOMuiz 34lais 10743
Upep = W Hhpy (126000 50400 126000 63000 126000 ' 252000 -

/ co 2 (T Py 16y 3T 0 sf
Yieg = W Hhpy (3150 7875 7875 1575 15750 | 7875 ) (13)
, , 3 123fn 3501f 87fn+% 9fn+% 9fn+% 9fpi1
Yary = Y gy ( 3500 | 28000 Ly 2800 875 3500 | 5600) (14)
/ / 4 Y o 376/n 1424f,, +3 176fn+§ 608fn+% 16fn+§ 16 fp+1
Ynpg = Y FhgyiAh (7875 7875 fe 875 7t 1575 | 1875 915)
, B o (61f 475f e+l 25 125fn+% 25fn+% 11 fpi1

Yoyt = Y YR <1008 2016 5047+ T 1008 1008 ' 2016 ) (16)
" B 19f,, 1427fn+% 241fn+% 133fn+% 173fn+% 3fni1
Uit =Y +h< 288 7200 3600 1200 7200 800 ) (17)
" " 14f, 43f"+% 7f”+% 7f"+g 1f”+% Jn+1
Uniz =Y +h< 225 T 150 225 225 7 450) (18)
yis o= y'+ h<51f" + Sadis + et + GAELEE B/ + anH) (19)
n+3 800 800 400 400 800 800
v o= Y+ h<14f ny Sy | Shig Py 14f"+g) (20)
n+d 225 ' 295 75 225 295

Ynir = Y+ h<19f" Bt + Bt + iy + Bt 19f”“> (21)

288 96 144 144 96 288
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3 Analysis of basic properties of the method

Examination of the basic properties of the method in terms of the order of accuracy and
error constant, consistency, zero stability and convergence analysis is carried out in this

section

3.1 Local truncation error

The local truncation error (LTFE) is difference between the exact solution y (2,4i) at

ZTp = Tp+i and the numerical approximation

3.1.1 Order
3.1.2 Lemma

The order one-step hybridized method is 6

3.1.3 Proof

The block method is of the form
2 _ _ 1
y(t) =D iyl (ta)h' + h* Y Bitn) fusi (22)
i=0 i=0
Assuming,

Yn+v ~ y(tn + Uh)v fn+j = (tn +jhvy(tn +jh))

and y(z,) differentiable on the interval [a, b] continuously.
The local truncation error (LTE) is represented as the linear operator L{y(z); h] for the

developed method such that

1

Lly(t); h] = y(tn +ih) — [ arhy'(t) — aoh?y"(t) — 1® Z Bi(t) frtj (23)
=0

By expansion using Taylor’s series approach about point ¢ of the right hand side (RHS),
the order of the method is 6
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iep==6
The Local Truncation Error (L.T.E) is

1
LT.E.(ty) = —y(t)+ ynorhy/(t) + a2h®y" (t) + ash®y" (t) + h* > Bj(t) fur(24)
=0

For each of the member of the block formula (7) - (21), the local truncation error

was obtained using taylor’s series expansion,

L,y = O 0 (110, Llytt,. k1 = — VO o o)
Lly(t,,3);h) = —% +0 (h'?), Lly(t,,10):h] = —%m +0 (h'?)
Lyt ] = —oIVDO) 6 (4110), Ly, i) =~ O) g (1)
L[y’(tn+%); h] = —%ﬁg +0 (hY), L[y’(t7l+§); h] = —% +0 (hY)
I (i) =~ 00 0.00), 1l inget) = - SO o )

L ()50 = SO0 18), Ll (200 = SO g
L[y”(tn+%);h] = —%?0(0%) +0 (h?), L[y"(tn+%);h] = —%2(205) + 0 (h®)
L[y (tnt1); h] = —%((30(8) +0 (%)

The method is of uniform order are [6,6,6,6,6,6,6,6,6,6, 6]T

3.2 Convergence Analysis of the Hybridized One-Step Block Method

The convergence of the block method will be established by expressing formulas in matrix

form adopting the following notations.

139
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Theoreml1

We assume Z as the approximation of the true solution of vector Z in vectorial form
for the system obtained from OSHBM on the block interval [0, 1]. If the error vector is
denoted by E = (60,6%76%76%,6%, e1) where e; = y(t;) — y;. Assume hat the solution
is in closed form and also differentiable om [to,#y] and that || E ||= || Z - Z ||, then as
h — 0, the method is said to be a convergent method of order six. Proof: Suppose the

N x N-matrices of the coefficient of OSHBM method is defined as follows:

1 0 0 0 0O 00 0 0 O 0
o 1 0 0 0O O O O o0 o 0
o 0 1 0 0O O O O o0 o 0
0o 0 o1 0 O O O o0 o 0
o 0 0o o1 0 O o0 o0 O 0
o 0 0o 0 -1 1.0 O 0 O 0
0O 0 0 0 -1 0 1 0O 0 O 0
0O 0 0 0 -1 0 O 1 0 0 0
U=
o 0 0 0 -10 0 O 1 O 0
o 0 0 0 -10 O O 0 1 0
o 0 0 0 0o 0 0 -1 1 O 0
o 0 0 0 0o 0 0 -1 0 1 0
o 0 0 0 0 0o 0 -1 0 O 0
o 0 0 0 0 0 0 -1 0 O 0
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70,1

70,2

10,3

70,4

10,5

0

and the known values contained in the N-vector given by

C= ( —yo — hnofo, —yo — hno1 fo, —yo — hno,2f0, —yo — hno 3 fo, --

=

o=

=

=

=

S

=

o=

=

=

0

W

K

0

0

0

1,1

m,2

7,3

1,4

m,5

70,1

70,2

70,3

10,4

M0,5

0

=

o=

=

utl=

=

=

3
=
ES

=

ot

0

W

= = 3
(SN SIS mﬁ (SIS
N e 5

=
[S1[ %
W™

70,1

10,2

10,3

10,4

10,5

Mis
k)

m,i

1,2

m,3

m,4

m.,5

)

According to Rufai & Ramos [17], we define the following vectors corresponding to the

exact values y(x) and its derivatives

Z = (y($1),y(1‘2), U 7y(xN71)7y/(x1)7 e ay/(‘TNfl)ay”(wl)r e

' (@n-))

"

141

F = (f(xo,y(xo),y’(xo),y”(:ﬂo), f(xl,y(xl),y/(xl),y”(xl), f(xN,y(xN),y/(xN),y (Z.N))T
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the Exact form of the system formed is
UZ—-VF+C=-L(h). (25)
the approximate value can be written as
UZ-VF+C=0. (26)
The subtraction of (25) from (26) gives
U(Z—-2Z)-V(F—-F)=L(h). (27)
recalling that £ = Z — Z = (e, e1,e2,€3,¢€4, e1)T, therefore equation (27) becomes

UE-V(F - F)=L(h). (28)

To obtain F — F = JE, we apply the Mean-Value Theorem. J is the jacobian matrix
and the partial derivaties are applied at intermediate points, we have (28) as ¢ having

1 = =V J as a matrix, we have
(U+y)E = L(h). (29)
For a very small h, the matrix U + v, therefore
(U+y)t=0q. (30)

Expanding the terms of  in taylor’s series while considering the norm, || Q ||= O(h~3),

we can observe that
| E =]l QLMY =] 2 I=]| L(h) || = O(h~*)O(h?) = O(h®)
= O0(h=0(h%) = O(h5)

The method is sixth-order convergent.
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3.3 Zero stability of the Hybridized One-Step Block Method
The block method is generally represented as
Ay, = ADy__ 4w BYF,, + BOF, (31)

The hybridized method is said to be zero stable, if the roots of

dethA©® — A =0, (32)

that is, the first characteristic polynomial lie inside or on the unit circle, i.e |\ < 1
and it’s roots with |A\| = 1 as long as the multiplicity did not exceed the order of the
differential equations, according to Lambert [11].

For h— 0, the method in (31) which is a system of equations can be written as;
Ay, — ANy, (33)

where A is identity matrix.

The roots of the method is

(A=1)*A2=0 (34)

4 Numerical Application

In this section, the performance and efficiency of the newly developed method is tested on
some third order initial and boundary value problems of ordinary differential equations.
The tables [1 -5] shows the comparison between the Maximum Absolute Error of the

news method with selected problems in literatures.

e OSHBM: Maximum error in the One-Step Hybridized Block Method as developed

in this article.
e TSHBM: Maximum error in Two-Step Hybrid Block Method referenced as [16]

e NPST: Maximum error in Non-Polynomial Spline Technique referenced as [1]

143
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e CSM: Maximum error in Cubic Spline Method proposed referenced as [6]
e FSDM: Five-step direct method of order nine [7]
e QSM: Maximum error in Quartic Spline Method referenced as [4]

e FDM: Maximum error in Finite Difference Method of algebraic order-six referenced

as [12]

o CBIHM: Maximum error in Continuous Block Implicit Hybrid Method referenced
as [3]

e ITPBDM: Implicit Three-Point Block Direct Method referenced as [18]

Problem 1
A modeled singularly perturbed problem in fluid mechanics
—ey” 4 y(t) = 812cos(3t) + esin(3t)
y(0) =0, y(1)= 3esin(3), y'(0)=0, 0<t<l1.

Exact Solution

y(t) = 3esin(3t)

Problem 2
A Boundary Value Problem
/. 3 2 t
y'=ty+ (> —2t* -5t —3)e", 0<t<1

y(0)=0, ¢(0)=1, y(1)=0

Exact Solution

y(t) = t(1 —t)e'
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Problem 3

Consider a third order boundary value problems with mixed boundary value conditions

/1 /
m_ Y t) ¥y 1
Vet e

y(2) =0, y"(1)+03y(1)=0, »'(2)+0.15/(2)=0, 1<t<2.

whose exact solution is

2 1
y(t) = e + calog(t) + est? — - + J17log(t)
where
_ 33 . log(2)(7 + 26log(2)) o _ 26log(2) - T log(2)
4T 9 21 2T T 0 BT T4 3
Problem 4

Considering the third order linear initial value problem
y" =2y" + 3y — 10y + 34te 2 — 1672 — 106> + 6t +34 0<t<1.
y(0)=3, ¥ (0)=y"(0)=0.

whose exact solution is

y(t) =t2e 2 — 1?2 +3
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Problem 5
Considering the third order initial value problem
y/// =t—dy

y(0)=0, ¢'(0)=0, #"(0)=1. h=0.01

Exact Solution

-3
S 2 24z
y(t) 16005( t)+16+8
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Table 1: Maximum Absolute Errors for Problem 1

M e Method MAX-ABS Error M e Method MAX-ABS Error
10 {5 OSHBM  2.20100x107'' 20 & OSHBM  3.49032x107'3
10§ TSHBM 250472 x107° 20 { TSHBM  3.97180x10!!
10 L QSM 2.50000 x107% 20 £  QSM 1.90000 x10~*
10 55 OSHBM  7.94394x107'2 20 45 OSHBM  1.24820x10~ '3
10 g5 TSHBM  9.02593 x10'° 20 45 TSHBM 1.43122 x10~!
10 3  QSM 6.80000 x10~* 20 &  QSM 5.70000%10~°
10 g OSHBM  2.55692x107'2 20 & OSHBM  4.02300x10~'
10 g TSHBM  3.00527x107'° 20 & TSHBM  4.67482x107'?
10 & QSM 1.20000x107* 20 &  QSM 1.30000x10~°

Table 2: Maximum Absolute Errors for Problem 2

147

h  Method MAX-ABS Error h  Method MAX-ABS Error h  Method MAX-ABS Error
4 OSHBM  4.67885x10~' L OSHBM 7.31430x107'¢ & OSHBM  1.14300x10~'7
& NPST  5.29920x10~7 5 NPST  2.61270x107® & NPST  1.49990x10~°
5 OSM 168610 x10™® 45 CSM 445100 x10™* & CSM  1.12930 x10~*
Table 3: Maximum Absolute Errors for Problem 3

h  Method MAX-ABS Error h  Method MAX-ABS Error

¢ OSHBM  856097x10™° 5 OSHBM  2.15011x107'2

¢ TSHBM  8.17298x10°7 5 TSHBM  2.37099x107'

¢ FDM 140000 x10™® 4  FDM 5.00000x 107

7 OSHBM  1.36814x107'° & OSHBM  5.64135x107 '3

7 TSHBM  1.44941x107% g TSHBM  6.26244x10~ !

7% FDM 291000 x10=7 &  FDM 1.33000x 107
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Table 4: Error Comparison for Problem 4

h  Ezact OSHBM FSDM ITPBDM
0.1 299819 5.3919E-14 6.6218E-13 2.593481E-13

0.2 298681 2.2563E-12 6.2238E-11 4.361134E-11
0.3 2.95939 5.2986E-12  3.5134E-09 2.967204E-11
0.4 291189 9.8984E-11 6.1100E-07 9.981296E-11
0.5 2.84197 1.6376E-11 6.4183E-07 2.342377E-10
0.6 2.74843 2.5145E-11 1.8082E-06 4.550881E-10
0.7 2.63083 3.6721E-10 1.3511E-06 7.912180E-10
0.8 2.48921 5.1726E-10 1.3367E-06 1.275017E-09
0.9 2.32389 7.08953E-09 7.9041E-06 1.945292E-09
1.0 2.13534 9.50875E-09 3.7360E-05 2.849440E-08

Table 5: Errors Comparison for Problem 5

h Ezact OSHBM  CBIHM
0.1 0.004987516655 1.6316E-14 2.1530E-13
0.2 0.019801063624 2.5492E-13 8.5054E-12
0.3 0.043999572204 1.2567E-13 6.8439E-11
0.4 0.076867491997 3.8568E-12 2.9415E-10
0.5 0.117443317650 9.1145E-11 8.9993E-10
0.6 0.164557921036 1.8234E-11 2.2216E-09
0.7 0.216881160706 3.2478E-12 4.7276E-09

0.8 0.003194884367 5.3069E-13 7.4418E-13
0.9 0.004041807602 8.1096E-13 1.1100E-12
1.0 0.004987516655 1.1741E-13 1.5931E-12
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5 Conclusion

A uniform sixth-order OSHBM for the direct solution of third-order Ordinary Differential
Equations using collocation and interpolation techniques has been derived in this article.
Basic properties of the method such as the order, zero-stability, the convergence and
stability analysis of the method have been well studied. The new approach performs
better in comparison with the absolute and maximum error than some cited existing
methods in literatures. The limitation of this approach is that it was not extended to

the solution of systems of third-order differential.
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