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1 Introduction

Fixed point theory is one of the most fascinating fields of research in the growth on nonlinear analysis.
One of the pioneer results of fixed point theory is the Banach fixed point theorem [27] which play a significant
role in solving the existence and uniqueness of solution to different problems in mathematics. Numerous
problems encountered in everyday life stem from incomplete information that is not well-expressed in con-
ventional mathematics. In 1965, Zadeh[2] introduced the notion of fuzzy sets, that proffer efficient means to
handle imprecise information, laying the foundation for subsequent research in fuzzy mathematics. Build-
ing upon Zadeh’s work, Goguen [3] extended this concept of fuzzy set to L-fuzzy set thereby replacing the
interval [0,1] by L that is completely distributive lattice. Heilpern [4] further extended the notion of fuzzy
mappings and derived fixed point results in the metric linear space. For more, we refer [1, 7, 5, 9, 10, 23, 28].
Rashid et al. [6] introduced the conception of 8ry, -admissible for two L-fuzzy mappings and derived nu-
merous results for these mappings. Moreover, Jleli and Samet [15] introduced a contemporary metric space,
which is referred to as F-metric space, to extend the classical metric space. Samet et al. [25] introduced a
new category of contractive type mappings referred to as 8- 1 contractive type mapping and S- admissible
mappings in metric spaces and obtained the existence of fixed point results. Further, Raji [21] generalized
the concept of (-1 contractive type mappings and obtained various common fixed point results for this
generalized class of contractive mappings. Further results can be found in [8, 17, 19].

Recently, Lateef [22] introduced the notion of F-metric space as a generalization of traditional metric space
and proved Banach contraction principle in the setting of this generalized metric space and establish some
common fixed point theorems for (8, v)-contractions.

Based on the above insight, we introduce the concepts of F-metric spaces and subsequently establish a-fixed
point results for fuzzy enriched ¢-¢ contraction within the framework of complete F-metric spaces. To
bolster our findings, we offer illustrative examples demonstrating the practical application of the presented
results. Also, we explored as an application, the solution for fuzzy integrodifferential equations in the context
of generalized Hukuhara derivative.
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1.1 Preliminaries
‘We begin this section by presenting the concept of ¢-p contractive and F-metric space.
Definition 1.1. [14] A mapping ¢ : [0,00) — [0, 00) is said to be a comparison function if it satisfies the
following:

(i) ¢ is monotonic increasing,

(i) limp—oo ¢™(t) =0, for each t > 0.
Definition 1.2. [16] A mapping ¢ : [0,00) — [0, 00) is said to be a (c)-comparison function if it satisfies
the following:

(i) ¢ is monotonic increasing,

i oo n

(ii) anl ¢™(t) < oo for each t > 0.

Clearly, every (c)-comparison function is a comparison function.
Remark 2.3 Let ¢ be a (c)-comparison function. Then:

(i) ¢(0) =0,
(ii) ¢(t) < t, for each t > 0,
(iii) ¢ is right continuous at 0.
Definition 1.3. Let ® be the set of all functions ¢ : [0,00)® — [0, c0) satisfying the following:
(i) ¢ is continuous,
(ii) Lp(tl,tg, t3, ta, t5) = 0 if and only if t1tat3tats = 0.
Example 1.4. The following functions ¢ : [0,00)® — [0, c0) belong to ®:
(1) o(t1,ta, t3, ta, ts) = titatstats,
(il) @(t1,ta,ts,ta,t5) = ef1f2fstats — 1,

(iii) Lp(tl,tg, t3,t4, t5) = ln(l + t1t2t3t4t5).

Definition 1.5. [13] A function T from a metric space (X, d) into itself is said to be a ¢-contraction if there
exists a function ¢ : [0,00) — [0, c0) satisfying

d(Tz,Ty) < ¢(d(z,y)), o,y € X. 21)

Definition 1.6. A function 7" from a metric space (X, d) into itself is said to be a (¢, ¢)-contraction if there
exist functions ¢ : [0,00) — [0,00) and ¢ : [0,00)% — [0, 00) satisfying

d(Tz, Ty) < ¢(d(z,y)) — p(d(z,y), d(z, Tx), d(y, Ty),d(z, Ty),d(y, Tx)), Vz,y€ X. (2.2)

Definition 1.7. [8] Let X be a nonempty set. A fuzzy set in X is a function Q : X — [0,1]. If z € , then
Q(z) is said to be the grade of membership of x € Q. An a-level set of Q denoted by [Q] is defined by

Qo ={z: Q(z) > a} if a € (0,1],
Qo = {x: Q(x) > 0}.
If X is a metric space, then IX is the collection of all fuzzy sets in X.

Definition 1.8. An a-fuzzy fixed point of a fuzzy mapping T : X — IX is defined as a point z* € X where
a € (0,1] and z* € [Tz*]q(z+)-

Definition 1.9. A common a-fuzzy fixed point of fuzzy mappings 7, f : X — IX is defined as a point
z* € X where a € (0,1] and z* € [Tz*]q(z+) N [f2*]a(z%)-

We now introduce F-metric space as follows:

Let g : (0,400) — R and F refer to the set of functions g satisfying:

e (FA)0<z<t=g(z)<g(t),

e (F2) for the sequence {x,,} C RT, limp— 00 Tr, = 0 & limy— 00 g(Tn) = —00.

Definition 1.10. [15] Let X be a nonempty set and dr : X X X — [0,400). Suppose there exists
(g,h) € F x [0,400) such that
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1) (z,y) e X x X,dr(z,y) =0 <= z =1y,
(ii) dr(z,y) =dr(y,z), for all (z,y) € X x X,
(iii) for every (z,y) € X x X, for every N € N, N > 2, and for each {u;}Y | C X with (u1,un) = (z,y),
we have N
—1

dr(2,y) > 0= gldr(w,y) <g | Y dr(wizirs) | +h.
i=1

Then, dr is referred to as an F-metric on X and (X,dr) is called an F-metric space.

Example 1.11. [15] Let dr : R x R — [0, +00) be a function defined by
x —y)?, if (z,y) €0,3] x [0, 3],
dr(z,y) = (@—y)% if (z,9) € [0,3] x[0,3]
|I_y‘7 if (x¢y) ¢ [0,3] X [073]:
with g(t) = In(t) and h = In(3), is an F-metric.

Definition 1.12. [15] Let (X, dr) be an F-metric space.

(i) Let {zn} C X. The sequence {zy} is referred to as F-convergent to € X if {x,} is convergent to
z in F-metric dr.

(ii) The sequence {xn } is referred to as F-Cauchy if

lim dr(zn,zm)=0.
n,m— 0o

(iii) If every F-Cauchy sequence in X is F-convergent to « € X, then (X, dr) is F-complete.

Lemma 1.13. [16] Assume X1 and Xo are nonempty compact subsets of F-metric space (X,dr) that is
closed. If x € X1, then
dF(x, X2) < Hp (X1, X2).

Definition 1.14. [23] Let (X, dx) be an F-metric space and 3 : (X,dx) x (X,dr) — [0,+00). Let T, f be
a pair of fuzzy mappings from X into 1, (X). Then, the pair (7T}, f) is referred to as an ar-admissible if:

(i) for a point x € X and y € [T]4,(z), Where ar(zx) € (0,1] with 8(z,y) > 1, then we have B(y, z) > 1,
for all 2z € [fy]af(y) # 0 where ay(y) € (0,1],

(ii) for a point x € X and y € [fx]q, (z), Where af(x) € (0,1] with B(x,y) > 1, then we have 5(y,2) > 1,
for all z € [TY]a, (y) # O where ar(y) € (0,1].

2 Main Results

In this section, we present with the following theorem.
Theorem 2.1. Let (X,dr) be a F-metric space and T be a fuzzy mapping from X into IX. Suppose for
each © € X, there exists ar(z) € (0,1] such that [Tz]n, (2) € C(2%X) satisfy the following conditions:
(i) (X,dr) is F-complete,
(ii) for a point xo € X, there exists ar(xo) € (0,1] such that x1 € [TTo]ay (xq)s
(#i) for all x,y € X, there exist ¢ € ¥ and ¢ € ® such that
H}'([Tx]ozT(m)’ [Ty]ozT(y)) < d)(d}‘(l‘,y))* (3 1)
SD(d]:(a:v y)7 d]:(ajv [Ta:]aT(z))v d]:(y7 [Ty]aT(y))v d]—‘(ﬂ?, [Ty}oq‘(y))v d]:(yv [TZ]aT(z)))
Then, T has an a-fived point * € [T2*]|qp(2*)-
Proof. By condition (ii), we can choose a point zg € X, there exists aT(zo) € (0, 1] such that
[T20]ag (z0) € C(2%)

is a nonempty compact subset of X, and there exists a point 21 € [T'z] y such that

aT(zo

dr(z1,22) = dr(z1, [TT0]ag(z0))-
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Again, for z1, there exists ar(z1) € (0,1] such that
[Txl]wr(ﬂcl) € C(QX).
Since [T'21]q.p.(c;) IS @ nonempty compact subset of X, there exists a point z2 € [T%1]qq.(2,) Such that
dr(z1,22) = dF (21, [TT1]) 0 (21))-
With (3.1) and Lemma, 2.1, we have
dr(z1,22) = dr (21, [T21]ap (1))
< H]:([Txo]our(mo)7 [Txl]our(ml))
< ¢(dF(zo,71))
—(dr(z0,21), dF (20, [TT0)arp (20)) 47 (15 [TZ1]ap (21))s
d]:(IUv [Txl]aT(zl))v d]:(wlv [TJ/’O]QT(I())))
< ¢(dr(zo,21)) — p(dr (w0, 1), dF(z0, 21), dF (21, 22), dF (z0, T2), dF (21, 71)).
By applying definition 2.3 in the above equation, we have
dr(z1,z2) < p(dr(z0,71)).
Now, for zg € X, there exists ar(z2) € (0, 1] such that
[T‘T?]aT(zz) € C(QX)'
Since [T22]q.p.(x0) IS @ Nonempty compact subset of X, there exists a point 23 € [T%2]qq.(2,) Such that
dr(z2,23) = dr (22, [TT2]ay(xs))-
Again, by (3.1) and Lemma 2.1, we have
dr(z2,23) = dF (22, [TT2]0p (20))
< Hr([T21]ag (e1)s [T22]arp (22))
< ¢(dr(z2,71))
—p(dr(z2,21),dF (22, [Tl'Q]aT(zz))v dr(z1, [Txl]arr(zl))?
dr (22, [TT1]ap (21)) 47 (21, [TT2] g (22)))
< ¢(dr(z2, 1)) — o(dr (w2, 21), dF (v2, 3), dF (21, %2), dF (x2, T2), dF (21, %3)).
By applying definition 2.3 in the above equation, we have
dr(z2,23) < ¢(dF(z1,22)).
Continuing this process having chosen x1,x2,x3, z4, ..., we establish a sequence {z,} in X such that
Tont+1 € [Txgn]aT(Mn), Tont2 € [T:E2n+l]aT(7:2n+1>’ then for all n, we have
dr(Tant1,T2n+2) < G(dF(T2n, Tant1)),
and
dr(zont2, 2n+3) < O(dr(T2nt1,T2n12))-
From these inequalities, we get
dr(@n, Tn+1) < (dr(Tn-1,2n)) < - < ¢"(dr (20, 21)).

Let € > 0 and n(e) € N and (g,h) € F X [0,+00) be such that (iii) of definition 2.9 is satisfied. Again, let
e > 0 be fixed. By Fi, there exists 6 > 0 such that

0<t<do=g(t) <g(d)—h.
Let n(e) € N such that
Y edr(ao,an) <8

n>n(e)

By the above inequality and Fi, we have

g| Y ¢"r@na) | <g| D ¢"(dro,w) | <gle) —h.

n>n(e) n>n(e)
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We have for all m > n > N,

m—1 m—1
9(dF(Tn,zm)) < g Z dr(zi,rip1) | +h<g Z ¢n(dr(z0,21) | +h
m—1 %S}
<g| D nldr@oa) | +h<g| D duldr(wo,an) | +h <o (32)
i=n n>n(e)

By F1, we have dz(zn,zm) < €, m > n > N. It follows that the sequence {z,} is F-Cauchy. Since (X,dr)
is F-complete, there exists 2* € X such that the sequence {z,} is F-convergent to z*, that is,

lim dr(zn,z*) =0 (3.3)
n— oo

To show that z* € [T2*]|qp (z+), We let dx(z*, [T2*] gy (z+) > 0. By the definition of g and (iii) of definition
2.9, we have

9(dr (@, [T2 | ap(ov) < 9 (dF (@, 220) + dF (@20, [T2 ] (ox)) + P
< g (dr (", 220) + HF([T22n-1lag(esn_1): 77 Jap @) + 1
< g(dr(z™,xan) + ¢(dF(z*, x2an—1))

- (df(ﬂi*vmn—l)»df(ﬂi*v [T2") 0oy (2+))s
dr(zen—1, [T22n—1]ap(ean_1)) 47 (@ [TZ2n—1]ar(@on_1))»
dr (@201, (T2 ] ap ("))
+h
< g(dr (™, @2n) + ¢(dr(z™, x2n-1))
—¢ (d]:(;v*, 22n-1), dF(x", [TT" | qp (@*)r dF (T2n—1,T20),
dr (2", 22n), dF (2201, T2 oy (av))
+h

Since {xn} is F-convergent to z*, by the properties of p € ¥, ¢ € ®, (3.3) with F2 and taking the limit
in the above inequality, we have

lim g(d}_(z*v [TI*]QT(.’E*)) = lim g(d}_(I*a 17271) + d}_(z*vl‘Qn*l)) +h = —oo,
n—oo n—o0

a contradiction. Therefore, we get dz(z*, [T2*]q.p.(z+)) = 0, which implies * € [T2*]4.1.(p*). Thus, the T
is a-fixed point o* € [Ta*]qp (2%)-

Example 2.2. Consider X = [0, +00), for all z,y € X, the F-metricdr : X X X — Rgr is defined as

|z — y| if (z,y) ¢ [0,4] x [0,4.

and for ¢ > 0 and h = In(4), g(t) = In(t). Then, (X,dr) is an F-complete F-metric space but not a
metric space because dr does not satisfy the triangle inequality, as

dr(z,y) = {(w —y)? if (w,y) €[0,4] x [0,4],

dr(1,4) =9>5=dr(1,3) +dr(3,4).
Moreover, let a(z) € (0,1] and define T: X — I¥X as

1 ifteo
NIfx=0, T(z)(t)= '
(0) If « () () {0 itt g0,
. 3;2
« 1f02§t<%,2
& if = z_
(i) 0 <z <oo, Tt =43 Loy St<io
& if & <t<a?
0 ifz?<t<oo,
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and )
ifo<t<ys,
2 2
T =45 Tigsi<i
if 45 <t <y?
if y2 <t < oo.
We now define ¢ : [0,00) — [0,00) by ¢(t) = %t for t > 0 with ¢ € ¥ and ¢ : [0,00) — [0,00) by
p(t) = %t with ¢ € ®.
For all z € X, there exists ar(z) = § € (0,1], such that [Tz],,.(z) € C(2%).
Case I: If x = y = 0, then

Sl wle R

[Tzl(g) =0,
then  Hr([Tz]ar(z)s [TYlar(y) =0
< d(dr(@,9) — ¢ (dr (2,), dr (@, [T2)ap (@) 47 U, [TYlar ()
dr (@, [Tylay(y) 47 W, [T oy ()
Case II: If 2,y € (0,00), then

[T2](a) = {t € X : T(@)(t) 2 %} - [0, %}

and

a Yy
ey = : > 1= Z1.
[Tyl(g) ={te X:T)®) = 7} [07 6]
For x # y and by definition of dx, we have

T y\?
H}'([Tx]arp(z)v [Ty]aT(y)) = % - %
|z + vl

30

N

(lz = y))?

IN

11—2|:1: —yl*= f—zdf(%y)
< d(dr(z,y)) — ¢ (dr(@,9), dr (@, [T2)ar @) 47 ¥, [TYlar @)
dr(z, [TYap(y)) dF (Y, [Tx]oup(:c)))
Hence, all the conditions of Theorem 3.1 are satisfied. Thus, there exists 0 € [0, +00), that is,
0e€ [TO](%)
We consider the a-fixed points result for two fuzzy mappings as follows.
Corollary 2.3. Let (X,dr) be an F-metric space, and let T, f be fuzzy mappings from X into I’X. Suppose

that for each x € X, there exist ar(x), af(x) € (0,1] such that [Tx]ay (z) [fx}af(z) € C(2X) satisfy the
following conditions:

(1) (X,dr) is F-complete,
(i1) For a point xo € X, there exists ar(zo) or ayf(xo) € (0,1] such that
21 € [Tx0]ay (zg) OF T1 € [fa:o]af(m),
(it3) For all z,y € X, there exist ¢ € ¥ and ¢ € ® such that
Hr(T2lag (2) [[Yla, ) < Sldr(z,y)—
eldr(z,y), dr (2, [Tl ar () a7 @, [fYla, @)
dr (@, [fYla; ) 47 W [T2]ar (@) -

Then, T and f have a common a-fived point x* € [Tx*]qp (ox) N [fx*}af(z*>.

Proof. The proof follows from Theorem 3.1 by taking fuzzy mappings T, f from X into IX.

We now consider the a-fixed points results for multivalued mappings.
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Corollary 2.4. Let (X,dr) be an F-metric space. Let R be a fuzzy mapping from (X,dx) into CB(X)
satisfying the following:
(3) (X,dr) is F-complete,
(it) For a point xg € X, there exists x1 € Rxo,
(it4) For all xz,y € X, there exist € U and ¢ € ® such that
Hr (R, Ry) < ¢(dr(z,y))—
¢ (dr(z,y), dr(z, Re), dr (y, Ry),
dr(z, Ry),dr(y, Rz)) .
Then, R has a fized point x* € Rx*.

Proof. Define a-fuzzy mappings T : X — IX, for some ar € (0,1] by
ar, ifte Rix,
T(z)(t) = .
0, ift¢ Riz.

Then,
[T2]ap@) = {t € X : T(x)(t) > ar(z)} = Riz.

Implies for all z,y € X,
Hr([Tx]ag @) Yo, ) = HF (Riz, Ray).
The remaining proof follows from Corollary 3.3. Thus z* € X,
z* € [Tx* g (2x) = Ra™.
O

Corollary 2.5. Let (X,dr) be an F-metric space and Ri, R2 be fuzzy mappings from (X, dr)into CB(X)
satisfying the following:

(i) (X,dr) is F-complete,
(i) for a point xo € X, there exists 1 € Rizg or 1 € Raxo,
(@ii) for all x,y € X, there exist ¢ € U and ¢ € ® such that

Hr(Riz, Ray) < d(dr(z,y)) — @(dr(z,y), dr(z, Raz), dr (y, Rey), dr(z, Ray), dr (y, Raz)),
Then, R1 and Rz have a common fized point x* € Rixz™* N Rax™.

Proof. Define a-fuzzy mappings T, f : X — IX, for some ar, ay € (0,1] by

T( )(t) ar, iftée Rjx,
xT =
0, ift ¢ Riz,

and
af, if t € Ray,
t) =
o0 {07 e
Then,
[T2]ap @) = {t € X : T(z)(t) > ar(z)} = Rz,
and

[felas @) = {t € X : f(@)(t) = ay(2)} = Ray.
Implies for all z,y € X,
H}-([Tx]aT(.r)a [fy]af(y)) = H]:(R1x, ng).

The remaining proof follows from Theorem 3.1. Thus z* € X,

7" € [T ag(zv) N [f2 0 (2v) = F12™ N Raa™.

127
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3 Application

Here, we demonstrate applicability of the results developed in the previous sections to investigate the
solution of fuzzy initial value problem by using generalized Hukuhara differentiability. For more details on
this, we refer to [18, 20, 24, 26].

As a starting point, we introduce the symbols that will be used in this section. Let ] denote the space of
nonempty, compact, and convex subsets of the n-dimensional Euclidean space R™. If A,B € H! and | - ||
denotes the Euclidean norm in R™, then, the Hausdorff metric d on H7 is defined as

d(A, B) = max { sup inf |la — b||, sup inf |ja — b||} .
acAbEB pcBacA

We now introduce the following definitions.
Definition 3.1. Let u: R"™ — [0, 1] be a fuzzy mapping.
(a) wu is said to be normal, if there exists z9 € R™ such that u(zo) = 1.
(b) w is said to be fuzzy convex, if for all z,y € R™ and 0 < p < 1, we have
u(p + (1= p)y) = min{u(z), u(y)}.
(c¢) w is said to be upper semicontinuous, if for all a € [0,1], [u]® is closed.
(d) [u]® is compact.
Definition 3.2. [24] Suppose u,v,w € F™. An element w is referred to as the Hukuhara difference of u

and v, if it satisfies the equation u = v + w. Now, u © g v denotes the Hukuhara difference points of u and
v. Clearly, u © g u = {0}, and if u © v exists, then this is unique.

Definition 3.3. [24] Assume g : (a,b) — F™ and to € (a,b). g is referred to as strongly generalized
differentiable or GH-differentiable at to, if there exists g¢;(to) € F™ such that

g(to +h) ©m g(to), g(to) ©m g(to + h)
and
lim o+ h)Omglte) _
im ¥¥—4mM™——————~ lim

_ g(to) ©m g(to +h) _ g
h—0t h h—0* h

G (to)-

Example 3.4. [24] Consider the fuzzy mapping g : R — F’ defined by g(t) = C - ¢, where C is a fuzzy
number defined with its a-levels by [C]* = [1 + a,2(3 — «)]. Then,

o JI+a,2B—a)t], t>0,
g} {[2(3—a)t,1+a], t<0.

Obviously, the functions g* and g are not differentiable at ¢ = 0. However, g is GH-differentiable on R and
9¢:(t) = C, meaning that g is GH-differentiable at ¢ = 0.
We now consider the following fuzzy initial value problem (FIVP) as follows:

z'(t) = g(t, z(t)), teJ=10,T],
{:z:(O) = xo, (4.1)

where z’ derivative is considered in the sense of GH-differentiable, where at the endpoints of J. The fuzzy
the fuzzy one-sided derivative is considered and the fuzzy function g : J x F’ — F’ is continuous, and the
initial data xo € F’. We denote C'(J, F’) as the collection of all continuous fuzzy functions g : J — F’
with continuous derivatives.

Lemma 3.5. [22] A fuzzy function x € CY(J, F') is a solution of (4.1) if and only if it verifies the integral
equation

z(t) = 20 O (—1)/ g(s,z(s))ds, teJ=10,T].
0

Theorem 3.6. Suppose g: J X F' — F' is continuous such that
(i) g(t,x) <g(t,y) for z <y,

(ii) there exist some constants T > 0 large enough such that \ € (O, ﬁ) and the metric for z,y € F’,
with x <y and t € J such that

gt 2(8)) = 9(t, y(t))lls < 7max {doc (2, y)e 7= }
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Then, (4.1) has a solution in C1(J,F").
Proof. Let CY(J, F")beendowedwith
d(x,y) = sup max {doo (;z:(t),y(t))ef‘r(tf‘s)} ,
teJ teJ

forz,y € CL(J, FYandr > 0.Then, withg(z) = In(z),z > 0andh = 0, (C*(J, F'), d;)isacompletemetricspace.
Let A,B: CY(J,F') — (0,1].Forxz € C*(J,F"),

t
Le(t) = 20 O (*1)/ g(s,x(s)) ds.s
0
Letx < y.Then,itfollowsfromtheassumptionofdefinitiond.1(a)that
t t
Ly(t) =z06H (—1)/ g(s,z(s))ds < zo ©pm (—1)/ 9(s,y(s)) ds = Ry(t).
s s

IfL.z (t) ;é Ry(t) and T : Cl (J7 ]_-/) N ]-CI(J,]:')as
Braz(r) = {A(z% if (t) = Lo(t)

0, otherwise.

0, otherwise.

= {B0 170t

Again,ifarp) = A(z)andaryy = B(y), weget
[Telare, = {r € X : (To)(t) > A@)} = {La (D)}
Similarly,
[TYlarq, = {Ry(®)}.

Then,
H([TI]ULT(I) I [Ty]ﬂtT(y) )

—max{ sup infllz—ylz, sup inflle—y|lz p < max {sup I1Za(t) - Ry(t)m}
teJ

2€[Tz]anp,, YE[TYlap(,,

= supye g |11z (t) — Ry()||r

= sup,e s || [ 9(s,2(s)) dsts — [ g(s,y(s)) dstol|,

< supye s { [ llg(s,a(s)) — g5, y(s)) | dsts }

< supycy {fdu)\ max {doo(z,y)e*"(t*‘;)} ds t(;}

< Asupye { (1 — 8) max {doo (z,y)e "= } }

<At - 8)dr(w,y)

< oldr(z,y)) — e(dr (@, [Tlar(c)): a7 W, [TY]aT(y)): 47 (@, [TYlar(y)), dF (Y, (T3] ar(a)))-

Hence, all the conditions of Theorem 3.1 are satisfied with ¢(t) = %tandgp(t) = %t, fort > 0.Thus,x*is a solution of (4.1). O
4 Conclusion

The main findings of this study demonstrate applicability of F-metric spaces in establishing a-fixed point
results for fuzzy enriched ¢-1 contraction in a complete F-metric spaces. This study provides significant
advancements in the understanding of F-metric space, through illustrative examples, we showcased the
practical applicability of the results and explored as an application, the solution for fuzzy integrodifferential

equations in the context of generalized Hukuhara derivative. Future work could also explore the extension
of this results to other types of fuzzy mappings.
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