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1. Definitions

Let Y ay, be a given infinite series, which we denote by a, with the
sequence of partial sums {s,}. Let us consider the transformation

m

¢ ! (1.1)
N Sn+k .
m+ 1 P
If t,,, — s, uniformly in n, then the series ) a, is said to be almost
convergent to s (see[11]). Let ¢ denote the set of all almost convergent
sequences.The series a (or the sequence {s,} ) is said to be absolutely
6

almost convergent (see [6],[4],[5],[3]) , if

(o]
> |émn
m=0

< 00, (1.2)

uniformly in n, where

1

man — o\ k n+k» 217 n — Un 1.
¢, m(m+1)kzo an+k (TL ) ¢07 a (3)

An infinite series Y ay, is said to be absolutely (C,«), a > 0, if

o0 o

Y <, (1.4)

n
n=0

where 77 is the (C, @) mean ([11]) of the sequence {nay} , that is

1 n
™ = DAY kay, (1.5)
n k=0
and A%’s are given by
1 (0.9}
n=0

Let [ and [ denote the set of absolutely convergent series and almost con-
vergence series respectively.We have the following known results :

()1 c | c |C1] (1.7)
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(i1) land |C,al, 0 < a <1, are mutually exclusive. (1.8)

Let f be a 27-periodic integrable function defined over (—, 7). The Fourier
series of f at x is given by

1 > , S
Sao0 + > (an cosnx + by sinnz) = ;}An(ﬂﬂ) (1.9)

n=1

The series conjugate to Fourier series (1.9) is given by

i( tn s NE — by cos nz) = ian(x) (1.10)

We write - -
60 = S+t + -0 - 20@] @
velt) = S+t — S0 (112

Let S, (f;x) and S} (f;x) denote respectively the nth. partial sum and
modified nth. partial sum of the Fourier series (1.9). Then

Su(fix) = ) Ax(x) (1.13)
k=0
n—1
Si(fiz) = ) Alz) + %An(x) (1.14)
k=0
It is known that ([16], page 50) that
2 [T ' 5)t
Sufie) = S@) = | 6alt) 32”;(;; /22>) dt (1.15)
2 [T j Y
Si(fiz) = fl@)= = i ¢ (1) S;ngjlzg/é)) dt (1.16)
2. Introduction
It is known [8] that the series

n=1
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is usually called Hardy-Littlewood series or simply HL-series.Hardy and
Littlewood [8] have shown that (2.1) is (C, 1) summable to the value

l/oﬂ KW ; u)cot%u — log(2 sm%) ¢z(u) du (2:2)

s

whenever the integral

/0 qﬁx(u)%cot%u du (2.3)
exists. Further [8], if
o0
/ |pp(uw)| du = O(t), ast — 0T, (2.4)
0

then (2.1)converges if and only if (2.3) exists.As the interest of HL-series
lies in the relation to the integral (2.3), there are relations very similar to
those between the conjugate series > By, (z) and to the integral

/7r Yalu) du. (2.5)
0 u

It is known([16], page 50), that if f € L(0,7), then (2.5) exists almost
everywhere. On the otherhand there exists a continuous function for which
the integral given in (2.3) diverges for almost all z[8]. At this stage we
remark that above results on HL-series remain unaltered, if we replace the
H-L series by

2 SH(frx) — f(x
S~ Silfin) S

(2.6)
n=1 n
The series (2.6) is summable (C, 1) to the value
T u 1
¢z (u)=cot=u du, (2.7)
0+ 2 2

if it exists. Further, if (2.4) holds, then a necessary and sufficient condi-
tion([16], page 125) for the convergence or summability (C, 1) problems of
(2.6) is the convergence or the integral (2.7).Thus the convergence or (C, 1)
summability problem of (2.6) is same as that of (2.1) though their sums
are different and hence we may term (2.6) as an HL-series.

3. Known Result
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Prossdorf[14] studied the degree of approximation in the Holder metric
and proved the following theorem:
Theorem A
Let fe Hy,(0<a<1l)and 0 < <a<1. Then
f-a for0 < a <1
nf—e, or e
I900) = Tl =OW . 15001 ¢ pogmyios, wary o (3D
where 0,,(f) is the Fejer mean of the Fourier series of f.
The case 8 = 0 of Theorem A is due to Alexits. With regards to the
approximation of functions of L, norm, the following is due to Quade[15]
Theorem B
Let f € lip(a,p, (0 <  <1) . Then
n-, forp > 1
llon(f) — f||(0’p) =0(1) n™°, forp=10<a<l . (3.2)
(logn)/n, forp=1,a=1
In 1996 [2], the degree of approximation in the generalized Holder metric
has been introduced and the following result has been obtained.
Theorem C
Let sp(x) be the nth partial sum of (1.9). Suppose that A € T and there
exists a positive non-decreasing sequence (u,,) such that
e e}
Z (k + 1)|an,k‘ = O(/Ln) (3'3)
k=in
Then for p >1and f € H(a,p),0 < a<1,0< <
> o (14 Log(pn /M) P/2NE L p()ATT8 ) for0<a <1
| kzzjoan,kSk—fH(B,p) =0(1) (1+log)\(§fﬁ/)\n))ﬁ oA (logh) -7, o1

(3.4)

where ), is any positive non-decreasing sequence such that A\, < .
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In the middle of 1998, Das et al [6] had determined the degree of approxi-
mation of the series

o~ Salfiz) — fl@)
1/2 3.5
2+ - (35)
by means of A-transform in the generalized Holder metric in the following
form :
Theorem D

Suppose that A € T and there exists a positive non-decreasing sequence
(p4,) such that

o0

S (k4 sl = OGun). (36)

k=pn
Let M,(x) be the A-transform of the series (2.12).Then for p > 1 and
feH(p),l<a<,0<8<a
(logpn )P/ [(1 +10g(pin/An) P N0 + @b(n)/\i_aw}, for0 < o < 1

(logpin)® [W—%MM + ¢(n)/\5(log>\n)1*ﬂ, fora =1
" (3.7)

HMn(x)*Xz(W/Mn)H(B,p) = 0(1)

)

where A, is any positive non-decreasing sequence such that A, < p, and

P(n) =350 lank — ank+1| -

Very recently Manish Kumar et al[12], dealing with Euler, Borel and (e, ¢)
mean of H-L series for functions of Lipschitz class, have established the
following theorems :

Theorem E
Let 0 < B <a<1landlet f € Hyp Then

. p-a for o — 1
1B = s = O (ot n, bty « 63

where EL(T) is the (E, q) mean of the H-L series.
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Theorem F
Let 0 <3 <a<1landlet f € Hyyp. Then

) B fora—B#1
1B(0) - sy =0 { B8 0T E L 6

where B),(T") is the Borel mean of the H-L series.

Theorem G
Let 0 <3 <a<1landlet f € Hyyp. Then

o for0<a—pB+#1/2

len®) = Sllsy =0 { 1w POSO PTE L mag

where e, (T) is the (e, ¢) mean of the H-L series.

However, the absolute convergence, absolute Riesz summability and abso-
lute Cesaro summability problems of HL-series were first studied by Mo-
hanty and Mohapatro[13]. Their result on absolute Cesaro summabilty is
as follows :

Theorem H

If %T(t) € L(0,7), then the HL-series is summable |C,a|, o > 0.

4. Main Result

Dealing with absolute almost convergence of H-L series, in the present
work , we prove the following theorem :

Theorem

If %T(t) € L(0,r), then the HL-series (2.6) is summable [ .

5. Lemma

In order to prove the theorem we require the following lemma :
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Lemma
If -
Z sin(n + k)t (5.1)
then
Om?t), 0 <t< -
gty =00 0 0SS (52)
o), nL-I—l <t<m
Proof of the lemma :
For 0 <t < 75, we have
" ksin(n+k)t
Im(n,t)| = B —
()] = |3 = E B
k=1
k=m
< Z kt , as |sin(n+k) t| < (n+k)
k=1
= O(m?t)
Next for all ¢
k sin (n+ k)
In(n,t)| =
(. ) kZ s
k=mo
< Max Z sin (n + k)t , where max is taken for m; < k < mg
n—+m P
mi
k=mo
< Max| Y sin (n+k) t‘
k=m1
=0t ).

6.Proof of the theorem

By the definition, we have that the series Y M e l,if
and only if,

o0

< 00,
m

/ O (t ksm(n—l—k)tdt
(n+k) 2tan2
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uniformly in n. As by the hypothesis fo ld’zt < 00, in order to establish
the theorem it is enough to show that

> o= Z m+1 ‘Zk‘”"nizk gt = o),  (6.1)

uniformly in 0 <t <7 and n .
We have

> = <Z Z ) , where T = [t_1]

m=T+1
= I + Iy, say. (62)

Now

1) . (6.3)

Next

= 0(1) . (6.4)

Collecting the results (6.2) , (6.3) and (6.4), , we obtain (6.1) and this
completes the proof of the theorem.

Conclusion

The result in this article is quite independent of the result of Mohanty
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and Mohapatra.One can find results for the convergence of operators asso-
ciated with H-L series.
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