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TOTAL STRESS AS A TOPOLOGICAL INDEX

H. MANGALA GOWRAMMA, P. SIVA KOTA REDDY, P. S. HEMAVATHI,
M. PAVITHRA, AND R. RAJENDRA

ABSTRACT. In this article, we see the total stress of a graph as a topo-
logical index and obtain a formula for computing total stress index of
trees. Also, we prove that total stress index of a graph G is zero iff G
is complete. Further, a QSPR analysis has been carried to demonstrate
that total stress index can be used as a predictive measure for physi-
cal properties of lower alkanes. Linear regression models involving total
stress index have been presented for some physical properties of lower
alkanes.
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1. INTRODUCTION

For standard terminologies/notions in graphs the book by Harary [2]
is followed. When necessary, this article will supply non-standard terms.

Let G = (V,E) denote an undirected graph that is finite, simple and
connected. A shortest path in G between two nodes x and y, is called a
geodesic between z and y. A chemical compound’s molecular graph is a
simple connected graph where atoms of the chemical compound are consid-
ered as nodes and the chemical bonds between them are considered as edges.

Topological indices are nothing but theoretical molecular descriptors.
They are graph invariants playing a vital role in Chemistry (see [6,21,22]).
Many topological indices have been explored for graphs with considerable
applications in Chemistry [21,22] for instance, Wiener index, Zagreb index,
Harary index etc.

Alfonso Shimbel [18] introduced the concept ‘stress of a node’ in a network
in 1953 as a centrality measure. The stress of a node u in a graph G, denoted
by strg(u) (or simply str(uw)), if there is no possibility of confusion, is the
number of geodesics passing through u. We denote the minimum stress
among all the nodes of G by 6 and the maximum stress amongst all the
nodes of G by ©¢. K. Bhargava et al. [1] have explored the concepts of total
stress (stress number) of a graph G. The total stress of a graph G, denoted
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by Nu:(G), is defined as
(1) Nsi:(G) = Z str(u)

ueV
Raksha Poojary et al. [8,9] have studied the total stress of a graph G but
by calling the stress of G. They have mainly studied the stresses of some
standard graphs. They have determined the stress of a cut-node of G for the
case when G has at most two cut-nodes. Within the families of all complete
bipartite graphs of order n and all trees of order n, they have determined
which graphs have the lowest and largest stress. They provide an intriguing
formula and a technique to find stress using adjacency matrix, noting that
it plays a significant role in determining the length of the shortest path and

the distance between a given set of nodes.

Throughout this study, we refer to a graph as a simple connected graph.
In section 2, we see Total stress as a topological index and obtain a formula
for computing total stress index of a tree. Also, we prove that total stress
index of a graph G is zero if and only if G is complete. Section 3 presents the
results of a QSPR investigation of the physical properties of lower alkanes
using the total stress index of molecular graphs, along with some excellent
linear regression models for the physical properties.

2. TOTAL STRESS AS A MOLECULAR DESCRIPTOR

A topological index, often referred to as a molecular descriptor, is a math-
ematical formula that may be applied to any graph that represents any
molecular structure. One can evaluate mathematical values and look into
some other physicochemical aspects of molecules using such a topological in-
dex. It is therefore a useful strategy for avoiding costly and time-consuming
laboratory experiments. For stress based topological indices, we suggest the
reader to refer the papers [3-5,10-17,19,20].

The physical properties of chemical compounds are converted into nu-
merical data via quantitative structure-property relationship (QSPR) inves-
tigations, which are then used to build regression models and investigate
correlations between the physical attributes and the structure of the com-
pounds. With QSPR, a number of topological indices have been examined.

Since isomorphic graphs have same total stress, the total stress is a graph
invariant i.e., the total stress is a molecular descriptor(i.e., a topological
index). We call total stress of a graph G as total stress index (TSI) of G.
By the definition of total stress (see Eq.(1)), we have, for any graph G

0c|V(G)| < N (G) < 0|V (G)].

This inequality gives the bounds for TSI of G. By counting the number of
geodesics and the internal nodes in geodesics, we see that, for any graph G
of diameter d, the TSI of G is given by

d
Ny (G) = Zfi(z' -1),
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where f; denotes the number of geodesics of length 7 in G (see [1, Proposition
2.6]). The following result is useful for computing TSI of tress.

Proposition 2.1. For a tree T on n nodes, we have

(2) Na(T) =) > Ictlcyl| .

vel |1<i<j<m

where I is the set of all non-pendant internal nodes in T and the sets
CY,...,CY denote the node sets in the components of T — v for an internal
node v of degree m = m(v).

Proof. Since a pendant node in a tree T has zero stress, we concentrate on
internal nodes and to compute the TSI. Let v be an internal node of T of
degree m = m(v). Let C7,...,CY, be the components of the node deleted
graph 7' — v. Using the fact that there is one and only one path between
any two nodes in a tree, we have

str(v) = ) [CPI|CY)

1<i<j<m

(see [1, Proposition 3.2]). Hence by Eq.(1), we have

Nao(T) =Y | > Icrlcy]

vel |1<i<j<m
where I denotes the set of all non-pendant internal nodes in T (]
Theorem 2.2. For a graph G, Ngw(G) =0 if and only if G is complete.

Proof. Suppose that Ng,(G) = 0. Then by Eq.(1), str(v) = 0 for all
v € V(G). If [V(G)] =1 or 2, then G is a complete graph as G = K;
or Ky. Assume that |[V(G)| > 2. Let u,v be any two distinct nodes in G.
We claim that u, v are adjacent in G. For, if u, v are not adjacent in G, then
there is a geodesic in G between u and v passing through at least one node,
say w making str(w) > 1, which a contradiction. Hence, u,v are adjacent
in G. Therefore, G is complete.

Conversely, suppose that the graph G is complete. Then there is no
geodesic of length > 2 in G and consequently, str(v) = 0 for all v € V(G).
Then by Eq.(1), it follows that Ng,(G) = 0. O

3. A QSPR ANALYsIs FOR TSI

In this section, we carry a QSPR analysis for TSI of molecular graphs
with the physical properties of lower alkanes. To compute TSI of molecular
graphs of low alkanes we have used Eq.(2).

The TSI Ng, of molecular graphs and the experimental values for the
physical properties of considered lower alkanes are presented in Table 1. For
the experimental data of numerical values in columns 3 to 9 of the Table 1
one can refer [6] or [22].
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Table 1. TSI Ny, and the experimental numerical values of
the physical properties of low alkanes

Alkane Natr E B Im 56 b ameenT
Pentane 10 36.1 115.2 2527 264 196.6 33.3 16
2-Methylbutane 8 279 1164 2529 246 187.8 329 15
2,2-Dimethylpropane 6 9.5 122.1 25.72 21.8 160.6 31.6

Hexane 20 68.7 130.7 29.91 316 2347 299 18.42
2-Methylpentane 17 60.3 1319 29.95 29.9 2249 30 17.38
3-Methylpentane 16 63.3 129.7 29.8 30.3 2312 308 18.12
2,2-Dimethylbutane 13 49.7 132.7 29.93 27.7 216.2  30.7 16.3
2,3-Dimethylbutane 14 58 130.2 29.81 29.1 227.1 31 17.37
Heptane 35 98.4 146.5 34.55 36.6 267 27 20.26
2-Methylhexane 31 90.1 147.7 34.59 348 2579 272 19.29
3-Methylhexane 29 91.9 145.8 34.46 351 2624 28.1 19.79
3-Ethylhexane 44 93.5 143.5 34.28 352 2676 28.6 20.44
2,2-Dimethylpentane 25 79.2 148.7 34.62 324 2477 284 18.02
2,3-Dimethylpentane 25 89.8 144.2 34.32 342 2646 29.2 19.96
2,4-Dimethylpentane 27 80.5 148.9 34.62 329 2471 274 18.15
3,3-Dimethylpentane 23 86.1 144.5 34.33 33 263 30 19.59
2,3,3-Trimethylbutane 21 80.9 1452 34.37 32 2583 29.8 18.76
Octane 56  125.7 162.6 39.19 41.5 296.2 24.64 21.76
2-Methylheptane 51  117.6 163.7 39.23 39.7 288  24.8 20.6
3-Methylheptane 48 1189 161.8 39.1 39.8 292 25.6 21.17
4-Methylheptane 47 1177 162.1 39.12 39.7 290  25.6 21
3-Ethylhexane 44 1185 160.1 38.94 39.4 292 25.74 21.51
2,2-Dimethylhexane 43 106.8 164.3 39.25 37.3 279 25.6 19.6
2,3-Dimethylhexane 42 115.6 160.4 38.98 38.8 293 26.6 20.99
2,4-Dimethylhexane 43 109.4 163.1 39.13 37.8 282  25.8 20.05
2,5-Dimethylhexane 46 109.1 164.7 39.26 37.9 279 25 19.73
3,3-Dimethylhexane 39 112 1609 39.01 379 290.8 272 20.63
3,4-Dimethylhexane 40  117.7 158.8 38.85 39 298 274 21.62
3-Ethyl-2-methylpentane 39 1157 158.8 38.84 38.5 295 274 21.52
3-Ethyl-3-methylpentane 36 1183 157 38.72 38 305 289 21.99
2,2,3-Trimethylpentane 32 109.8 159.5 38.92 36.9 294 28.2 20.67
2,2,4-Trimethylpentane 38 99.2 165.1 39.26 36.1 271.2 255 18.77
2,3,3-Trimethylpentane 38 114.8 157.3 38.76 37.2 303 29 21.56
2,3,4-Trimethylpentane 37 1135 158.9 38.87 37.6 295 276 21.14
Nonane 84 150.8 178.7 43.84 46.4 322 22.74 22.92
2-Methyloctane 78 1433 179.8 43.88 44.7 315 23.6 21.88
3-Methyloctane 74 144.2 178 43.73 44.8 318 237 22.34
4-Methyloctane 72 1425 178.2 43.77 44.8 3183 23.06 22.34
3-Ethylheptane 68 143 176.4 43.64 44.8 318 23.98 22.81
4-Ethylheptane 61 141.2 175.7 4349 44.8 3183 23.98 22.81
2,2-Dimethylheptane 68  132.7 180.5 43.91 423 302 228 20.8
2,3-Dimethylheptane 66  140.5 176.7 43.63 43.8 315 23.79 22.34
2,4-Dimethylheptane 66  133.5 179.1 43.74 429 306 22.7 21.3
2,5-Dimethylheptane 68 136 179.4 43.85 429 307.8 22.7 21.3
2,6-Dimethylheptane 72 1352 180.9 43.93 428 306 23.7 20.83
3,3-Dimethylheptane 62 137.3 176.9 43.69 42.7 314 24.19 22.01
3,4-Dimethylheptane 62  140.6 175.3 43.55 43.8 322.7 24.77 22.8
3,5-Dimethylheptane 64 136 1774 43.64 43 312.3 23.59 21.77
4,4-Dimethylheptane 60 135.2 176.9 43.6 42.7 317.8 24.18 22.01
3-Ethyl-2-methylhexane 60 138 175.4 43.66 43.8 322.7 24.77 22.8
4-Ethyl-2-methylhexane 62 133.8 177.4 43.65 43 330.3 25.56 21.77

3-Ethyl-3-methylhexane 56  140.6 173.1 43.27 43 327.2 25.66 23.22
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3-Ethyl-4-methylhexane 58 140.46 172.8 43.37 44 312.3 23.59 23.27
2,2,3-Trimethylhexane 56 133.6 175.9 43.62 41.9 318.1 25.07 21.86
2,2 4-Trimethylhexane 58  126.5 179.2 43.76 40.6 301 23.39 20.51
2,2,5-Trimethylhexane 62 124.1 181.3 43.94 40.2 296.6 22.41 20.04
2,3,3-Trimethylhexane 54  137.7 173.8 43.43 422 326.1 25.56 2241
2,3,4-Trimethylhexane 56 139 173.5 43.39 429 3242 25.46 22.8
2,3,5-Trimethylpentane 60 131.3 177.7 43.65 41.4 309.4 23.49 21.27
2,4,4-Trimethylhexane 56 130.6 177.2 43.66 40.8 309.1 23.79 21.17
3,3,4-Trimethylhexane 52 140.5 172.1 43.34 42.3 330.6 26.45 23.27
3,3-Diethylpentane 52 146.2 170.2 43.11 43.4 342.8 26.94 23.75
2,2-Dimethyl-3-ethylpentane 50 133.8 174.5 43.46 42 338.6 25.96 22.38
2,3-Dimethyl-3-ethylpentane 52 142 170.1 4295 42.6 322.6 26.94 23.87
2,4-Dimethyl-3-ethylpentane 54  136.7 173.8 434 429 3242 25.46 22.8
2,2,3,3-Tetramethylpentane 46 140.3 169.5 43.21 41 334.5 27.04 23.38
2,2,3,4-Tetramethylpentane 46 133 173.6 43.44 41 319.6 25.66 21.98
2,2,4,4-Tetramethylpentane 52 122.3 178.3 43.87 38.1 301.6 24.58 20.37
2,3,3,4-Tetramethylpentane 48 1416 169.9 432 41.8 334.5 26.85 23.31

Regression Models. An investigation was conducted using a linear re-
gression model

Y =A+ B Ng,
where Y = Physical property and Ng, = TSI, using Table 1. We have
computed and tabulated the correlation coefficient r, its square 2, standard
error (se), t-value and p-value in Table 2.

Table 2. 7,72, se, t and p for the physical properties (V') and TSI
Y T 2 se t

p
bp  0.9087 08259 (4.3393) (0.0871)  (9.8099) (17.8287)  (L.386E — 14) (3.919E — 27)
mu  0.9340 0.8724 (2.0505) (0.0411)  (59.3773) (21.4110)  (1.143E — 59) (1.127E — 31)
mr 09160 0.8391 (0.7007) (0.0140)  (38.9367) (18.6961)  (9.696E — 48) (2.747E — 28)
hv 09435 0.8903 (0.5905) (0.0118)  (43.9798) (23.3193)  (3.754E — 51) (7.207E — 34)
et 0.8377 0.7017 (6.9033) (0.1387)  (30.4995) (12.5556)  (5.198E — 41) (2.884E — 19)
cp —0.9349 0.8741 (0.3089) (0.0062) (105.223) (—21.5770) (3.915E — 76) (7.170E — 32)
st 07117  0.5066 (0.4629) (0.0090)  (38.0398) (8.04289)  (3.553E — 45) (3.001E — 11)

For the physical properties - boiling points, molar volumes, molar re-
fractions, heats of vaporization, critical temperatures, critical pressures and
surface tensions of low alkanes, the linear regression models are presented
below:

3) bp = 42.5686 + 1.5544 - Ny,
mv = 121.7557 + 0.8821 - Ny,
mr = 27.2853 + 0.2632 - Ny,
hv = 25.9708 + 0.2767 - Ny,
ct = 210.5480 + 1.7415 - Ny,
cp = 32.5055 — 0.1339 - Ny,
st = 17.6122 + 0.0727 - Ny,



186 H. Mangala Gowramma, P. Siva Kota Reddy, P. S. Hemavathi and R. Rajendra

200 . I mv
- — mw = 121.7557 + 0.8821 Ny,
180 F e e |
100 | 1 160
‘0 140 | 4
o' . bp
ol ® | =tp = 125687 1 L5544, | 120
0 20 40 60 80 0 20 40 60 80
Figure 1. Model for bp Figure 2. Model for mv
50 : . =mr ‘/ 50| i
— mr = 27.2853 + 0.2632N.r
45 .
10f !
10} !
350 |
30
30} 1
o o hv
o5 || 2 e = 25,9708 1 02767,
0 20 40 60 80 0 20 40 60 80
Figure 3. Model for mr Figure 4. Model for hv
- o o cp
aal | — cp = 325055 — 0.1339N,,,
300 | 30
250
25 F |
200
® . ct
8| —ct = 210.5480 + 1.7415 N
150 O T T | ! ! |
0 20 40 60 80 0 20 40 60 80

Figure 5. Model for ct Figure 6. Model for cp



Total stress as a topological index

24
228
20 1
18} A
16 o9 o st o
e |— st =17.612240.072TNy,
I : :

20 40 60 80
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For the physical properties the numerical values of 7,72, se, t and p (shown
in Table 2) are good except for the surface tension (for which r? = 0.5066).
Therefore the linear regression models (3)-(8) can be used to make predic-
tions.

4. CONCLUSION

From the Table 2, it follows that the linear regression models (3)-(8)
are useful for predicting the physical properties of low alkanes except for the
surface tension. This demonstrates that in QSPR investigations, the total
stress index(TSI) may be employed as a predictive indicator.
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