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ABSTRACT. In this article, we study the V L-total eccentricity index
and V L-hyper total eccentricity index of graphs. Also, established the
results of these indices for complete graphs, path with n-vertices, cycle
graphs, wheel graphs, star graphs and complete bipartite graphs.
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1. INTRODUCTION

Consider a finite graph G with n vertices and m edges. The vertex set
of G is denoted as V = V(G) and the edge set as E = E(G). Let e = uv
denotes the edge connecting the vertices u and v. In such a case, v and v
are said to be adjacent. In a simple graph G, the degree dega(v) or briefly
d, of a vertex v is equal to the number of neighboring vertices. A vertex v
is considered as well-connected if its degree is equal to (n — 1) meaning that
it is adjacent to every other vertex in G. Let dg(e) or briefly de denote the
degree of an edge in G. The eccentricity e(v) of a vertex v is the distance
to the vertex that is farthest from v. That is, e(v) = max{d(u,v);u € V}.

The total graph T'(G) of G consists of all the verticesin V = V(G) |J E(G)
where two vertices in T'(G) are adjacent if and only if they are adjacent edges
or vertices in G or if one element is a vertex and the other is an edge in G
that are incident with each other.

The eccentricity of an edge e or a vertex u in T'(G) is denoted by ey (u)
or ep()(e) respectively [1].

Let K, represent the complete graph with n vertices, K(j ,) represent the
star graph with (n + 1) vertices, C), represent the cycle graph on n vertices
and K, ) represent the complete bipartite graph with (m + n) vertices.

Several topological indices that rely on vertex eccentricity have already
been in the focus of several investigations. The topological indices are one
of the mathematical models that can be defined by assigning a real number.

The total eccentricity index of graph G is defined as

€a)= 3% eclv).
veV(G)
In line with this measure, Dankelmann et al., [2], and Tang et al., [11]
conducted research on the mean eccentricity of graphs. Fathalikhani et

al.,[4] conducted a study in which they examined the total eccentricity of
several graph operations.
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Results related zagreb indices and found in [5]-[7], [9], [10]. Motivated
from these, Deepika T [3] introduced the Veerabhadraiah Lokesha (V' L)-
index in the year 2021, defined as:

1
VL(G) = 5 > [de+dyp+4].
weE(G)
where, de = dy, +dy — 2 and df = d,, - d, — 2.
It is useful in QSPR and QSAR studies. Motivation from above, we define
the V L-total eccentricity index by

1
EVL)T(G) = B Z[eT(G)u +er@yetergu- eT(G)e].

ue

and the V L-hyper total eccentricity index by

1
HEVL)T(G) = = > ler@yu + er@e + er@u - encel’
4

ue

In the forthcoming section, we obtain results of defined indices for standard
graphs.
2. RESULTS OF VL RELATED INDICES ON FEW STANDARD GRAPHS

Theorem 2.1. Let K,, be a complete graph with n vertices. Then
(1) &VL)T(K,)=4n(n-1).

(15) HEVL)T(K,)=16n(n —1).
Proof. Let K, be a complete graph with n vertices and m = ”(nz_l) edges.
Every edge of K, is incident with exactly two vertices. Every vertex and
edge has eccentricity 2 in T'(G).

Consider,
. 1
(i) &VL)T(K,) = 3 > [er@u+ er@e + er@u - erye]
1
=3 > lleryu + er@e + eryu - er)el
weE(G)

+ ler@)v + er@)e + eV - erell
1

:52[(2+2+2-2)+(2+2+2~2)]

1 uv
=3 ;[16]

16
=5 [1]

o[t
=4n(n —1).
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and

.. 1 2

(il) HE(VL)T(K,) = 1 Z {(eT(G)U +ere+ereu- eT(G)e) }
1

=1 > ller@yu+ er@e + er@u - ere)el?

uv

+ [er@)v + er@)e + erev - er)el’]

:ZZ[(2+2+2-2) +(2+2+2-2)2}

= 32[128]

uv

128
=7 20
uv
= 16n(n —1).

Note 1: We observe that, HE(VL)T(K,) =4 £(VL)T(K,).
Theorem 2.2. Let P, be a path with n vertices. Then

(3n% +5n+18)  if n is odd.
(2n? — 15n — 16) if n is even.

D= |

(1) &VL)T(P,) = {

2l 4 5n3 + 2502 + 4 if n is odd.

i) HEWVIL)T(P,) =< 2
(7/7/) §( ) ( n) {%44_%_'_2171 +3TL+1 an is even.

Proof. Let P, be a path with n vertices. Then P, has (n—1) edges. Every
edge of P, is incident with exactly two vertices. T'(P,) has n point vertices
and (n—1) line vertices.

When n is odd:

153

Number of edges e = uv in G | £ of e in T(G) (er(G)) | € of end vertices (er(u), er(v))
! (=) (&), (50 + 1)
2 (") ("), ("52))
2 ) (2, (*32)

When n is even:

Number of edges e = uv in G | £ of e in T(G) (er(G)) | € of end vertices (er(u), ep(v))
)

: ) (N
2 pH1 ((5).(5) + 1)
) (G +2) G+1.G+2)

== =y ((n=2),(n—1))

Case(i): When n is odd
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Eccentricity of central vertex is (%4)7 eccentricity of pendant vertices

(n — 1), eccentricity of line vertices incident with central vertex is (231),
eccentricity of line vertices incident with end vertices is (n — 1) in T'(G).
We have,

(i) g(VL)T(P ) = Z [ET(G)U + €T(G)€ + eT(G)U' . eT(G)e]

Z [eT(G)U +er@ye + er@a)u - era)el
€B(G

l\DlH N | —

[eT(G)U +er@ye + era)v - er)el]

2|("5) < (5) < (") ()]

ol 4

el e () () ()
o) () () ()]
5[+ () + (559 (5]

+-~-+%[2][(n—2)+(n—1)+(n—2) (n—1)
+2(n—1)+ (n—1)?

[An -1 +4n+ D)+ m—-1n+2)(n+1)> +4] +--+ (2n* —n—2)

=-[*+m—-2]+- -+ (2n*—n-2)

»lkl)—wbh—rlkli—‘

(3n* + 5n + 18).

When n is even:

Eccentricity of central vertices are (§) and (%), eccentricity of pendant ver-
tices (n — 1), eccentricity of line vertices incident with central vertex is (%),
eccentricity of line vertices incident with end vertices is (n — 1).

We have,

Z[GT(G)UJ + er(G)e + er@)u eT(G)e]

(1) EVL)T(P,) =

MlH N —

Z [eT yu+ e e + er@yu - erq)el
€E(G

+ [eT(G)U +er@ye +erav - erqyel]



VL -total eccentricity index and VL- hyper total eccentricity index of some standard graphs

= I + () + (- CN+1G) + () + (5 (]
+§[2m<§>+<§+1>+<5>-<5+1>1
+[(g+1)+(g+1)+(g+1)-(g+1)]]+

5L —2)+ (= 1)+ (1= 2) - (n— 1)+ 2n— 1)+ (0 — 1))
(2+%+6)+ (20 —n —2)

2o 1m g

2
1
= §(2n2 — 15n — 16).

Case(ii): When n is odd

Eccentricity of central vertex is (%51, eccentricity of pendant vertices (n —

1), eccentricity of line vertices incident with central vertex is (%41), eccen-

tricity of line vertices incident with end vertices is (n — 1) in T(G).
We have,

. 1
(ii) HE(VL)T(Py,) = 1 Z [eT(G)u +erye +er@ - eT(G)e]2

1
=1 > ller)u + ere + eryu - erel?

uv

:1[4][<n;1>+<n;1)+<n;1_n;1>]2
[<n+1) <n+1> (;rl'n;l)r

i [(n—i—l) <n+3> <n+1.n—2i-3>r
£<n+3> ( ) <n+3 n+3)} L

+

2
2 2
[4[(n=2)+(n—1) +(n=2) (n— 1)
=D+ @m-1)+@n-1) (n-1)

- n2+4n—2 2+ n2+6n+4 2
n 4 4

When n is even:

155
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Eccentricity of the central vertices are (§) and (%), eccentricity of pendant
vertices is (n—1), eccentricity of line vertices incident with the central vertex

is (§), and eccentricity of line vertices incident with end vertices is (n — 1).

.. 1
(il) H(VL)T(P,) = 1 Z [eT(G)u +er@yetergu- eT(G)e]2

1

=1 > ller@u+ er@e + eryu - ere)el’

+ ler)v + er@e + er@v - ercel’]
~[G)+ () + G D)
(5)+E)+G )

[+ (45) G0
<n;2> N <n;2> N <n;2 _ n;2>]2+
[4(n=2)+(n—1)+(n—-2)(n—1)

+
+[n-1)4+m-1)+n-1)(n—1)?
4 3p3  21n?

4 8

+ 3n + 1.

Theorem 2.3. Let C, be a cycle graph with n > 4 vertices. Then

n+6n+5n it s odd.
(i) EVL)T(Cn) = {n3+432 g
1

if n is even.

n(n?+6n+5)> . .
.. ————  ifn is odd.
(ii) HEWVL)T(C,) = {n(n2 AT /

=5 if n is even.

Proof. Let C, be a cycle with n vertices. Then C,, has n edges. Every edge
of Cy, is incident with exactly two vertices. T'(G) has n point vertices and
n line vertices.

Case(i): When n is odd
Let n = 2k + 1, each point vertex of T(G) has eccentricity () = (k + 1),

and each line vertex has eccentricity (%) = (k + 1).
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We have,

. 1
(1) EVL)T(Ca) = 5 > ler@yu+ er@ye + er@e - ercel
1
=3 > ler@u+ er@e + eyt - er)el
weE(Q)

+ ez + ere + er@ - exel
- %Z[[(k+1)+(k+1)+(k+l)~(k+1)]
+[E+D)+(k+1D)+(k+1)-(E+1)]

- % STk + 1)+ 20k +1)?]
[2(ZU+ 1)+ (k+1)34n

n3 4+ 6n2 + 5n
1 .

When n is even:
Let n = 2k. Each point vertex of T'(G) has eccentricity (%) and each line
vertex has eccentricity (5). We have,

(i) SVL)T(Cn) = 5 Y _ler)u + ere + eryu - erc)el

ue

N = N

> ller@yu+ er@e + ereyu- er)el
weE(G)

+ lera)v + er@e + er@yv - erael]
= % D lI(k) + (k) + (k) - (k)] + [(k) + (k) + (k) - ()]

1
=3 >[4k + 2k7)
= (2k + k*)n
n3 4+ 4n?

4

Case(ii): When n is odd
Let n = 2k + 1, each point vertex of T(G) has eccentricity () = (k + 1),
and each line vertex has eccentricity (%) = (k + 1).

157
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We have,

.e 1
(if) HE(VL)T(Cy) = 1 > leryu + ere + eryu - erc)el’

ue

1
=1 Z llercyu + ercye + er@yu - ercel’

uv

+ [er@)v + er@)e + ere)v - er)el’]

:_Z [k + 1)+ (k+1)+ (k+1)- (k+ 1)

[(k+) (k+1)+(k+1)-(k+1)]2]
:—Z [(k+1)+ (k+1) + (k+ 1)%]?

[(k+1)+(k+1)+(/€+1)}

2
n n?+6n+5
2 4
_ "2 2
= 32(71 +6n+5)°.
When n is even:
Let n = 2k, each point vertex of T'(G) has eccentricity (%), and each line
vertex has eccentricity ().
We have,
(ii) HE(VL)T(Cy) = Z [eT(G)u +epae+eregu- eT(G)e]2

ue

|

1
=1 Z lercyu + erye + er@yu - er(c)el’

uv

+ ler@)v + er@)e + ere)v - er)el’]

42 ) () + (k) (0 [(6) + () + (k) - ()
= 5 IR + (7

= Zl(2k) + (R

4
32(n + 4n)?.

Theorem 2.4. Let W,, be a wheel graph with n > 5 vertices. Then

() VDT ==
6350

(i) HEVLT(W,) =25
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Proof. Let W, be a wheel with (n + 1) vertices. Then W, has 2n edges.
Every edge of W), is incident with exactly two vertices. Let W,, = K1 + C,,.
Let v be the central vertex of W,,, and vy, vs,...,v, be the vertices of C,,.
We have n edges of G’ which are incident with the central vertex and n edges
on the cycle.

Let Ey = {set of all edges incident with central vertex} and Es = {set of all
edges on with cycle}.

For e; = vv; € El(G) eT(ei) = 2 and GT(U) = 2, eT(vi) =3 If €iirl =
ViVi+1 € EQ(G) Then eT(eiiH) =3, eT(vi) = 3. AISO, ‘E1| = |E2| =n.

We have,
. 1
(i) EVL)T(Wy) = 3 > ler@yu + er@e + er) - ercyel
1
=3 > lleryu + er@e + er@yu - er)el
weE(G)

+ lere)v + ere)e + ere)v - er)ell
1

=-ST2+2+2-2]+[2+3+2-3|]
50

+%ﬂz[{3+3+3-3]+[3+3+3-3ﬂ

:% > [19]+% > 130]

uveFEq uveEo
— L(9m) + L 30m)
2 2
_ 49n
= T

and

.. 1
(it) HE(VL)T(Wn) = 4 > leryu + er@e + er@u- erel”
ue
1
=1 Z [ler)u + er@ye + er@a)u - €T(G)€]2
+ ler@yv + er@)e + er@)v - erc)el’]
1

=3 dle+2+2-27+(2+3+2-3)7
uwveFn
1
+4 D IB+3+3:3)7+(3+3+3-3)7
uv€ Fa
1 1
=3 > [185] + > [450]
uwveF wvE Fo
1 1
= Z(l85n) + Z(450n)

635
===

159
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Theorem 2.5. Let K1 ) be a star graph. Then
) 13n
(@) EVLT(Kqn) = —-
89n
T
Proof. Let K(; ;) be a star graph with (n + 1) vertices and n edges. Every
edge of K1, is incident with exactly two vertices. Let u be a central
vertex. Eccentricity of u is one and all other point and line vertices are of
eccentricity two in T(G). We have,

(i) HEVL)T(Kam) =

Z [ler@)u + er@ye + era)u - er)el
weE(Q)

+ ler@yv + er@ye + er)v - er)ell

:%Z[(1+2+1-2)+(2+2+2-2)]

uv

1
_
=
and
.. 1 2
(i) HE(VL)T(K(1,n)) = 1 > leryu + er@ye + er@yu - er(c)el
1
=1 Z lercyu + er@ye + er@yu - er(c)el’
+ lere)v + er@)e + er)v - ereel’]
1
=1 ol +241-27+(2+2+2-2)7
weE(Q)
1
s
=

O

Theorem 2.6. Let K, ) be a complete bipartite graph with (2 <m <n).
Then

(i) E(VIIT(K ) = S,

(i7) HE(VL)T(K () = 32mn.

Proof. Let Ky, ) be a complete bipartite graph with (m + n) vertices, mn
edges and [V1| = m, [Va| = n, V(K ) = ViU Va. Every edge of Ky, p)
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is incident with exactly two vertices. Every vertex of Vj is incident with n
edges and every vertex of V5 is incident with m edges. Every point vertices
and line vertices have eccentricity 2 in T(G). We have,

() EVIL)T(K ) = 5 Y _ler)u + er@)e + ert - er)e)

ue

NN

> ller@u+ er@e + ereyu- er)el
weE(G)

+ [er@@)v + er@)e + eV - er@ell

dole+2+2-2)+(2+2+2-2)

[NRE

and
(i) HE(VL)T(K ) = 5 3 _ler@)u + er@e + ereyt - erc)el’

ue

»lkl)—* + NG %IH

> ller@yu + ere + eryu - erel?

uv

ler)v + ercye + erav - erc)el’]

Z (2+2+2-2)%+ (2+2+2-2)7
€E(G

Z [128]

€EE(G

I
w
M NH

Note 2: We observe that, HE(V L)T (K ) = 4E(V L)T (K1 ))-

Corollary 2.1. Let K, ,) be a complete bipartite graph. Then
(i) E(VL)T (K n) = 8n®.

(it) HE(VL)T(K(ny) = 32n°.

Proof : Put m = n in the Theorem 2.6 we get a required result.

Theorem 2.7. Let F, be a fan graph. Then

() evrE) =" 1

1850  225(n — 1)
+ .

(i) HEVLT(F) == .
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Proof. Let F,, be a fan graph with (n + 1) vertices and (2n — 1) edges,
then F,, = K; + P,. Let F, be a fan graph with p(n + 1) vertices and
p(2n—1) edges. Then F,, = K1+ P,. Let v be the central vertex of F,,, and
V1, V2, ...,y be the vertices of P,. We have n edges of G which are incident
with the central vertex and p(n — 1) edges on the path.

Let E1(G) = {set of all edges incident with central vertex V} and

E»(G) = {set of all edges on with Path P,}.

For e; = vv; € El(G) €T(6i) = 2 and €T(1)) = 2, eT('Ui) =3 If €iirl =
viVi4+1 € F2(G). Then er(e;it1) = 3, er(v;) = 3. We have,

() SVLT(F) =5 lerau+ erce + ereu- ere)el

> ller@u+ er@e + et - er)el
weE(G)

+ [er@)v + er@ye + erv - er)el]
1
:52[(2+2+2-2)+(3+2+3-2)]
ecEy
1
+3 DIB+3+3-3)+(B+3+3-3)]

ecEs>

19
= S+ 15 -1)

= — —15.
2

and

.. 1
(it) HE(VL)T (W) = 4 > ler@u + ere + eryu - ercyel’

ue

1
=1 > ller@yu + ere + er@t - eryel?

uv

+ lere)v + er@)e + er)v - ercel’]

:i S 2424227+ (3+2+3-2)7

uv€Fq
1 2 2
+4 D IB+3+3-3°+(3+3+3-3)
uve Fo
_1 > 85+ E > [450]
! 4
uwveEq uve s
185n  225(n—1)
4 2
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Theorem 2.8. Let Ko, be a complete graph with 2n vertices and F is a
1-Factor of Ko, . Then

(1) &VL)T(Ka,—F)=16n(n—1).
(i) HE(VL)T(Kap — F) =64n(n —1).
Proof. Let Ko, be a complete graph with 2n vertices and [ =2n%-n

edges. F is a 1-factor of Ko,. Kz, — F has = 2n% — 2n edges. Every point
vertices and line vertices have eccentricity two in T'(Ka, — F').

2n(2n—1)]
2

() VDKo~ F) = 3 3 [eriey() + erie(€) + er)(w) - er (e)]

ue

1
=3 > ller@u+ er@e + er@t - er)el
weE(G)

+ ler@)v + er@)e + eV - eraell

:% S (242422 +(2+242-2)

weE(G)

=539
=8> 1]

= 8(2n? — 2n)

= 16n(n —1).

and

.. 1
(i) HE(VL)T(Kon — F) = § 3~ [er@u+ er@e + er@t - ereye)’

ue

1
=12 > ey + er@ye + eryu - erel?

uv

+ lera)v + er@e + er@yv - eT(G)€]2]

:iz[(2+2+2-2)2+(2+2+2'2)2]

1
=1 %;[128]

128

= > (1]
= 32(2n* — 2n)
= 64n(n —1).

Note 3: We observe that, HE(VL)T(Ka, — F)) = 4¢(VL)T(Kq, — F). O
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3. CONCLUSIONS

In this study, we present the results for the V L- total eccentricity index
and V L-hyper total eccentricity index on specific standard graphs. The
&(V L)- indices could serve as a valuable tool in computational domains. We
also plan to extend these indices to their product versions in future work.
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