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CONTINUITY CONDITIONS
FOR HOMOMORPHISMS OF CONNECTED
LOCALLY COMPACT GROUPS
INTO LIE GROUPS

A. 1. SHTERN

ABSTRACT. Using recent results concerning homomorphisms between con-
nected Lie groups, we obtain some results concerning the automatic conti-
nuity of some simplest homomorphisms of connected locally compact groups
into connected Lie groups and consider examples showing that such a homo-

morphism can be discontinuous everywhere.

§ 1. INTRODUCTION

Let G be a connected locally compact group, let H be a connected Lie
group, and let f: G — H be a homomorphism. We apply the known re-
sults [1, 2] concerning the automatic continuity properties of homomorphisms
between Lie groups to obtain the simplest automatic continuity conditions
for a homomorphism of the form f and to give conditions under which a
homomorphism of the form f can be discontinuous at any point of G.

8 2. PRELIMINARIES

Let us recall the results of [1, 2].
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Theorem 1. [1] The discontinuity group of every locally bounded homomor-
phism of a Lie group into a Lie group is commutative.

Theorem 2. [2] Every locally bounded homomorphism of a Lie group G into
a Lie group is continuous on the commutator subgroup G’ of the group G.

8 3. MAIN RESULTS

Theorem 3. Let G be a connected locally compact group, let H be a con-
nected Lie group, and let

f:G—H

be a homomorphism. If f is locally bounded and the restriction of f to some
normal subgroup N of G for which the quotient group is a Lie group is contin-
uous, then the homomorphism f defines a homomorphism Fy of the quotient
group G/Ny, where Ny C N is a normal subgroup of G for which G/Nj is
a Lie group, into the group H, and this homomorphism Fy is automatically
continuous on the commutator subgroup of G/Nj.

Proof. The connected locally compact group G is isomorphic to the pro-
jective limit of the quotient Lie groups G/Na, where Ny ranges over the
compact normal subgroups of G for which the quotient groups G /N, are Lie
groups (see Proposition 1.33 and Lemma 9.1 of [3]).

For every neighborhood U of the identity element of N, there is a compact
normal subgroup N; that is contained in this neighborhood U and for which
the quotient group G/Nj is a Lie group.

If the neighborhood U is chosen in such a way that f is bounded on this
neighborhood, then, for some Ny, f takes on N; the values in a small neigh-
borhood of the identity element in H that contains no nontrivial subgroups,
and hence takes IV to the identity element of H [4].

Then f is constant on Nj-cosets and hence is defined by a homomorphism
of G/N; into H. The rest follows from Theorem 2.

Example 1. Let
K =[] Gs.
k=1

where every compact Lie group Gy, is a counterpart of some simple compact
Lie group represented in the matrix form, for instance, Gy = SU(2), k =
1,2,...
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Every matrix entry fi;, i,7 = 1,2, of every element f = {f;; ?,j:l of the

group K defines a (bounded) function on the set of positive integers,
fijIN—>(C, i,j:1,2.

Applying a fixed character x of the Banach algebra m = B (N) of bounded
sequences which differs from the mapping defined by taking the value of the
sequence at some point of the set N, we obtain a finite-dimensional unitary
matrix representation

m f ={fij}i =1 — X))} =1 feK,

of the group K.

The representation 7 is obviously discontinuous, because the set of values
of the representation 7w on every neighborhood of the identity element is the
entire group SU(2).

§ 4. DISCUSSION

It looks provable that, if a compact normal subgroup N of G for which
the quotient group is a Lie group, is a quotient of the product of a connected
compact group and a totally disconnected compact group, for which the
connected part is a quotient of a (possibly infinite) product of compact simple
Lie groups [3], and at least one of the compact simple Lie groups in this
product repeats infinitely, then the scheme of the above example can be
used to construct a discontinuous finite-dimensional representation of N and
extend it to a discontinuous finite-dimensional representation of G [5, 6].
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