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Abstract: One of our aims in this paper is to discuss some iden-
tities of the type sum to product as follows.
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In the final result, we establish a congruence for py(n), the
number of colored partitions of the integer n, which is related to
the aforementioned identity.

Keywords: Colored integer partitions, Partition function,
Compositions, Lambert series, Congruences.
2010 Mathematics Subject Classification: Primary 05A17,
Secondary 11P82, 11P84.



Mateus Alegri, José L. Lopez—Bonilla and Taekyun Kim

1 Introduction
In this article we use the g-Pochhammer symbol, defined by:
(1—a)1—aq)(1—ag®) --(1—ag™ 1), ifn>0;
(a;q)n = :
1, if n = 0.
Taking the limit n — oo, we obtain:
(@3 @)oo = lim (a; q)n-

Let py(n)denote the number of integer partitions of n into k
colors. The generating function for the sequence (pi(n))n>0 is
given by

Zpk‘(n)qn = ( ,1 )
n=0 o

valid for |¢| < 1.
For the case k = 1, the following identities are well-known:
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The first equation is attributed to Euler [6], while the second
is due to Jacobi [3,4, 8]. Euler’s pioneering work on partitions
primarily utilized generating functions. In addition to (1), we
provide the following equation:
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1+Zl' (Z (1-q )) T (69
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Although identities of the type ”sum to product,” as in (1),
are well-studied for partitions, relatively few are known for col-
ored partitions. In the subsequent section, we demonstrate that

[e.o]

1k 1
1+;“;<L(W’Q)> (Gok

o

Here, we utilize a modified Lambert series given by

[e.9] n

a
L(an;q) = Z W7
where a,, and b,, are terms in sequences of complex numbers, as
discussed by Berndt [5] and Merca [9].

To prove the above equation, we employ a formula obtained
by Alegri for P,(z), [1,2], along with the concept of integer
compositions. A composition of an integer n is a way of writing
n as a sum of positive integers. The set of compositions of n is
denoted by C'(n). Considering

n=1

(aH0tm) "= [T -, @

n=1

where 7 € H = {b € C|Im{b} > 0}, z € C, and 7 is the
Dedekind eta function as defined in Ono [10]. The Taylor ex-
pansion of (2) is

(73 = > P
n=0

where
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L 01(w1)01(w2)"'01(wl)
=1 witwa+...+w; €C(n)
(3)

and the sum of divisor function o, is defined as

ox(n) = de.

dln
d>0

Specifically for z = k, a positive integer, P,(z) = pr(n),
the number of k-colored integer partitions of n'.

2 Results

Theorem 1. For k a positive integer, and |q| < 1, the following
identity holds:

00 o0 l
1 Z 1 k
_ an\k | ’
n=1 (1 —q") =1 g "
Proof. For |q| < 1, note that
k = k"
L <;q> =y
n —n(l—-q")
Simplifying further,
k > 0’1(71)
L|—q|=k —q".
CORDYE

!Several results in partitions and colored partitions can be found in An-
drews [3,4] and Fu and Tang, [7].
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To find the coefficient of ¢™, for n > 0, in (L (%, q))j, we
utilize integer compositions:

(L) -Sp( x otweae),
n=j

Thus,

:i Z’;‘: Z 01(w1)01(w2)"'01(wl) 7.

w w ... w
n=1 \ I=1 (w1,w2,...,w;)ECH 12 !

By the equation (3), for z = k, we know:

" ki Z 01(w1)01(w2)"‘01(wl)‘

{! wWiwWs - - - Wy
=1 (wl,wg,...,wj)GCn

pr(n) =

Therefore, the theorem is proved.
O

We can generalize the previous theorem, albeit without pro-
viding explicit combinatorial interpretations, as stated below.

Theorem 2. Ifb(k) is an arbitrary arithmetic function and |q| <
1, the following identity holds:

ﬁ (1= ¢q)p® _1+Zl|< <n’q>>l’

n:l
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Proof. Define

and
- 1
rR=1]]
n\b(k
L2 (1= gt
Given
b(k) > S b(d)
L (;q =D =
n o d
denote ¢, =34, %l). Then:

<L <b(:);Q>)l=§: S CurCus e |

n=l \ (wi,w2,...,w;)€Ch
Thus,
b(k) =

n(Q) =1 L 22 =N ", q"

n(Q) n<eXp< ( - ,q>>> ;cq
For R,

In(R) = > (=b(k)) In(1-q™) = b(k) 3 D" T = " ead”,
m=1 m=1[=1 n=1

Since In @) = In R, it follows that R = (). This completes the
proof.
O
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In the next theorem we explore the polynomial structure of
pr(n). Since

Zp(n)q”) =1l
(n:O n=1 (1 o qn)
it follows that

pr(n) =Y p(w1) -+ - p(wr),

=1 (wl,‘..,wl)ecn

or equivalently,

k
pe(m) =320 S0 plun) - plwy),

=1 wi+...4+wEPy

where P, denotes the set of partitions of n.
From the above equation, we derive the following result.

Theorem 3. For 1 < j < k, the following congruence holds:

j
pr(m)=> 1 Y plwr)--p(w) =0 (mod (j+1))).

=1 w1+---+wlepn

3 Concluding Remarks
In particular, in the previous theorem if j = 1 we find that
pr(n) =pi(n) (mod (j +1)!),

i.e., px(n) and p1(n) share the same parity.
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We believe that equation (3) and Theorems 1 and 3 have
significant potential for discovering new congruences for py(n),
especially for specific values of n. Moreover, a proof of The-
orem 1 using purely combinatorial arguments could offer addi-
tional insights and introduce interesting elements into the study
of partition theory.
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