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CENTER OF A PSEUDOCHARACTER

A. 1. SHTERN

ABSTRACT. We introduce the notion of center of a pseudocharacter on a
group, prove that this set is a normal subgroup of the group, and show that
the center of a pseudocharacter contains the maximal normal subgroup in the

kernel of the pseudocharacter.

§ 1. INTRODUCTION

Let G be a group and let f be a pseudocharacter on . In this note, we
study the properties of the so-called center of the pseudocharacter f defined
by Zy = {u e G| f(gu) = f(g) + f(u) for all g € G}. For the generalities
concerning pseudocharacters, see [1-4].

In particular, it turns out that Z; is a normal subgroup of G' containing
the maximal normal subgroup in the kernel of f (see [5]).

§ 2. PRELIMINARIES

Lemma. Let G be a group, let N be a normal subgroup of G, and let w be
the canonical epimorphism of G onto G/N. If a pseudocharacter f on G
(such that f(gh) — f(g) — f(h)| < ¢ for g,h € G) vanishes on N, then there
exists a pseudocharacter ¢ on the group G/N such that f =Y op. If G is a
topological group, N 1is closed, and f is continuous, then ¢ is continuous.
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Proof. Let G be a group, let N be a normal subgroup of G, let g € G, n € N,
and let f be a pseudocharacter on G vanishing on N. Let m € N. Then

m|f(gn)—f(9)] = |f(gn)™)=mf()| = f(g™( [] g *ng"n)—flg™)|<c,

k=m-—1
since

1
( I 9 Fng*)nen;
k=m—1
this implies that f(gn) = f(g) for all ¢ € G and all n € N. Therefore,
f is constant on every coset of N in . Define a real-valued function ¢
on G/N by setting p(gN) = f(g) (since f is constant on the cosets of IV, it
follows that this definition is correct). The above formula for m|f(gn)— f(g)|,
together with a similar formula for |f(gn)~"™) — f(g)~™|, shows that ¢ is a
pseudocharacter on G/N, and that ¢ = 1 o 7w, where 7 is the canonical
epimorphism of G onto G/N. The continuity assertion follows immediately
from the last formula.

§ 3. MAIN REsuULT

Theorem. Let G be a group, let f be a pseudocharacter on G, and let N =
ker f, i.e., N = {g € G : f(g) = 0}. Consider the set Ny of all elements
n € N such that f(gn) = f(g) + f(n) for all g € G. Then

(1) Ny'* € No;

(2) f(ng) = f(n)+ f(g) for all n € Ny and all g € G,

(3) Ny contains the products of its elements, i.e., f(gninz) = f(g)f(nin2)
for every ny,ns € Ny and all g € G;

(4) No is invariant under the inner automorphisms of G;

(5) No is a normal subgroup of G;

(6) Ny contains the mazximal normal subgroup in the kernel of f.

Note that Ny is nonempty since the identity element e € N belongs to Nj.
Proof. (1) We see that

flg) = flgn"'n) = f(gn™") + f(n)

for every n € Ny and all g € G} since

0= f(e) = f(n~'n) = f(n™") + f(n),
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we have f(gn™!) = f(g9) + f(n™!), which implies that n=! € Ny for all
n € Ny.

(2) Let g € G and n € Ny. Then f(g) = f(ngn™') = f(ng) — f(n) by (1).
Therefore, f(ng) = f(n) + f(g) for all n € Ny and all g € G.

(3)

flgning) = f(gn1) + f(n2) = f(g) + f(n1) + f(n2) = f(g) + f(ninz)

for all g € G and all ny,ny € No,
(4) Let g,h € G and n € Ny. Then

f(ghuh™) = f(hh~ ghh  huh™) = f(hh " ghuh™) = f(h™ ghu)
= f(h™'gh) + f(u) = f(g) + f(u) = f(g) + f(huh™").

(5) Ny contains inverses (1) and products (3) and is inner invariant (4).

(6) By the lemma, Ny contains every normal subgroup which is contained
in the kernel of f. Hence the normal subgroup Ny (5) contains the maximal
normal subgroup in the kernel of f (see [5]).

This completes the proof of the theorem,

§ 4. DISCUSSION

Obviously, the center of a pseudocharacter coincides with the whole group
if and only if this pseudocharacter is an ordinary real character of the group.
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