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FRACTION LOGARITHMIC ENERGY OF A GRAPH

M. K. NATESH, K. N. PRAKASHA, AND M. MANJUNATHA

ABSTRACT. This paper deals with the investigation of fraction logarith-
mic energy FLE(G) of a graph G. Here we present some upper and
lower bounds for FLE(G). We calculated the fraction logarithmic en-
ergy for several graph classes and also for some graphs with one edge
deleted. Also FLE(G) is calculated for some complements of several
graphs.
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1. INTRODUCTION

In this paper, we use simple graph G without self loops and multiple
edges. Let the set of vertices be {vy,v9, -+ ,v,} for i = 1,2,--- ,n, and let
v; and v; are the it" and the j** vertices respectively. If two vertices v; and
vj of G are adjacent, then we use the notation v; ~ v;. For v; € V(G), we
denote the degree of the vertex v;, by d;.

In mathematical chemistry, energy of graph defined by Ivan Gutman in
1978. The energy F(G) of G is defined as the sum of the absolute values
of the eigenvalues of its adjacency matrix. For more details on energy of a
graph, see [2, 3].

In 21st century, topological indices increasingly attracted the researchers
due to their various applications in different fields of Science and Technology.
K. N Prakasha [6] introduced the fraction logarithmic index in the chemical
graph theory, which is defined as

In (d;d;)
FL = —
(@) ;J (d; + d;)
The fraction logarithmic index motivated us to study fraction logarithmic
matrix which depends on degree of the vertices. fraction logarithmic matrix
is given by

In (d;d;) .
Fy={ @y v~
0 otherwise.
The characteristic polynomial of FL(G) is denoted by ¢rr(G,\) and
defined by
orL(G, \) = det(M — FL(Q)).
Since the fraction logarithmic matrix is real and symmetric, its eigenvalues
are all real numbers. We label them in non-increasing order as A\; > Ay >
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> An. The fraction logarithmic energy is denoted by FLE(G) and is
defined by

FLE(G) =) |xil.
=1

2. SOME BASIC PROPERTIES OF THE FRACTION LOGARITHMIC ENERGY OF
A GRAPH

Proposition 2.1. The first four coefficients of the polynomial ¢rr(G, )
are given as follows:

(’L) apg = 1,

(i1) a1 = 0, 2

(iii) ay = — 3 ;; {I(I;(ij;))} -

(Wa==-2 ) Ldi ) [+ dy) (s i)

ViU~ UE U5

Proof. (i) From the definition, ¢pr(G, \) = det[\] — FL(G)] and then we
get ap = 1 after easy calculations.

(ii) The sum of the determinants of all 1 x 1 principal submatrices of
FL(G) is equal to the trace of F'L(G). Therefore

ay = (—1)! -trace of [FL(G)] = 0.
(iii) Similarly we have

(—D%ay = Y

1<i<j<n

= ) @i - ajiag

1<i<j<n

1<i<j<n 1<i<j<n
B Z[ln(didj)r
o (di—Fdj) '

1<j

Qi Qg

aji  ajj

(iv)

Q5 A5 Ak
1<i<j<k<n |Qk; Qkj Qkk

= -2 Qij @k Wi

1<i<j<k<n

In (didj) In (djdk) In (dldk)
- Z [(di +dj) (dj +di) (di +dg) |

Vi~V YV UG
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Proposition 2.2. If A\, Ao, ..., \, are the fraction logarithmic eigenvalues
of FL(G), then
In (d;d;)
AP =2
>at=2y [a]

Proof. We know that

n n n

2
YN = YD aijay
=1

i=1 j=1

= QZa”—i-Za”

i<j

= 2) af

i<j

- oy [

d
Theorem 2.3. Let G be a graph with n vertices. Then
mum)r
FLE(G) < /2n | —-2%
(@) < y2m {(ddej)
Proof. Let A1, A2, ..., Ay be the eigenvalues of FL(G). Now by the Cauchy-
Schwartz inequality we have
n 2 n n
i=1 i=1 =1
We let a; = 1 and b; = ;. Then
n 2 n n
(Z |)\i|> < ( 1) (Z I/\i|2>
i=1 i=1 i=1
which implies that
[n (did;) 1?
FLE(G)]* <n(2 L
[FLE@G) <n(2) @ dy) )
1<J
and finally
[n (did;) 1?
FLE(G) < |2 —L
@)= J nz L (di +dj) |
1<7
which is an upper bound. (|

Theorem 2.4. Let G be a graph with n vertices. If R= det FL(G), then

FLEG)>$ E:Fndd} +n(n—1)Rx.

(di +dj)
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Proof. By definition,

(FLE(G))* = (D A |)

EID Y
<i|xi|2>+z|xi||xj|.

i=1 i#j

Using arithmetic mean and geometric mean inequality, we have

"D
Zl/\ AT = (Tl |
#J i#j
Therefore,
o=y
(FLE(G))* > ZM Pann—1) [ T 1N
i#£]
1
n(n—1)
> Z\)\ > +n(n — 1) (HM |2(n= 1)
= SN PP #n(n—1)R*
=1
In (d;d;) 2
= QZ[der } +n(n—1)Rn.
Thus,

FLE(G) > 2Z[m (did;) ] +n(n —1)Rx.

O

Theorem 2.5. Let G be a regular graph of n vertices with regularity r, then
1
FLE(G) = ﬂE(G)
Theorem 2.6. Let G be a semireqular graph of degrees v > 1 and s > 1.

Then FLE(G) = T3 E(G).

Proof. Consider a semiregular graph of degrees r > 1 and s > 1, the
F L—matrix is given by

FLG)= $¥3 (1) .

In (rs)
T
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(Here ; represents the eigenvalue with respect to adjacency matrix of the
corresponding graph.)
Thus the proof follows. a

3. FRACTION LOGARITHMIC ENERGY OF SOME STANDARD GRAPHS
Theorem 3.1. The fraction logarithmic energy of a complete graph K, is
FLE(K,)=2In(n - 1).

Proof. Let K, be the complete graph with vertex set V = {v1, va, ..., v}
The fraction logarithmic matrix is

r 0 In(n—1) In(n—1) In(n—1) ln(n 1)
n—1 n—1 o n—1
In(n—1) In(n—1) In(n—1) ln(n 1)
n—1 0 n—1 T n—1
In(n—1) In(n—1) 0 In(n—1) ln(n 1)
FL(Kn) _ n.fl n.fl . nj1 n. 1
ln(n.fl) ln(n.fl) . In(n—1) 0 ln(nlfl)
n—1 n—1 t n—1 n—1
In(n—1) In(n—1) In(n—1) In(n—1) 0
L n—1 n—1 T n—1 n—1 _

Hence the characteristic equation will be
1 1 n—1
</\— %) (A—In(n—1)) =0
and therefore the spectrum becomes

In(n—1) 1 _1
SpecFL(Kn) = ( nn:ll n(nl ) >

Therefore,
FL(K,)=2In(n-1).

Theorem 3.2. The fraction logarithmic energy of the crown graph SO is
FLE(S%) =4In(n —1).

Proof. Let S? be the crown graph of order 2n, the fraction logarithmic
matrix is

(0 0 0 ... 00 A ... A A
000 ... 040..A4HA4
000 ... 00A A ... 0 A
0 0 O 0 A A . A0
0 A A A0 0 ... 0 O
A 0 A A0 0 ... 00
A A O A 0 O 0 0
A A A 0 0 O 0 0]
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where A = mgn__ll)

Here the characteristic equation is

(A~ A" (A A ()\ +V2(n - 2)(n — 1)) ()\ V2 2)(n - 1)) =0
implying that the spectrum is

(—% S - 1) ln(”‘”)-

Specrn(Sn)=( " T ) 1 1

Therefore,
FLE(SY) =41In(n — 1).
0

Theorem 3.3. The fraction logarithmic energy of the cocktail party graph
Knx? 18

FLE(K,x2) =In(2n — 2).

Proof. Let K,x2 be the cocktail party graph of order 2n with vertex set

{u1, ug, -+, Upn, v1, v2, --+, vp}t. The fraction logarithmic matrix is
FL(Kps) =
0 B B B 0 B B B
B 0 B B B 0 B B
B B 0 B B B 0 B
B B B 0 B B B 0
0 B B B 0 B B B
B 0 B B B 0 B B
B B 0 B B B 0 B
B B B 0 B B B 0]
Here B = % This implies that the characteristic equation becomes
In(2n —2)\"! 1
" _— —=In(2n —2)) =0.
A ()\—i- o — 2 ) (A 2n(n ))=0
Hence, the spectrum is
~ In(2n-2) 1 -
Specrr(Knx2) = ( 2z 0 an(@n—2) >
n—1 n 1

Therefore,
FLE(K,x2) =In(2n — 2).
O

Theorem 3.4. The fraction logarithmic energy of the complete bipartite
graph Ky, », of order m x n is

FLE(Kp.n) = 2" 1n(mn).
’ m-+n
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Proof. Let K, , be the complete bipartite graph, the fraction logarithmic
matrix is

000 ..CCC
000 ..CCC
000 ..CCC
ccc 0 0 0
ccc 0 0 0
c ¢ ¢ 0 0 0]

Where € = 2mn)

m—+n
So the characteristic equation is

m+n—2 \/Tﬁ \/ﬁ _
N2\ e In(mn))(A + . In(mn)) =0

m

and hence, the spectrum will be

vmn _ /mn
SpeCFL(Km,n) = ( m+n lil(mn) . +?1 y m+n 11n(mn) ) )
Therefore,
FLE(Kpy) =2 o In(mn).
m

4. FRACTION LOGARITHMIC ENERGY OF COMPLEMENTS

Theorem 4.1. The fraction logarithmic energy of the complement K,, of
the complete graph is

FLE(K,)=0.
Proof. Let K,, be the complete graph with vertex set V = {v1, v, ---, v}
The fraction logarithmic matrix is
[0 0 0 0 0]
000 ... 0O
— 000 ... 00O
FL(EK,) = o
000 ... 0O
000 ... 0 0]

Then the characteristic equation is A™ = 0. Therefore,

FLE(K,)=0.
0

Theorem 4.2. The fraction logarithmic energy of the complement Ky ,_1
of the star graph is
FLE(Ki5-1) =2ln(n — 2).
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Proof. Let (Kj,-1) be the complement of star graph with vertex set V =
{vo, v1...vn—1}. The fraction logarithmic matrix is

[0 0 0 e 0 0 7
In(n—2 In(n—2) In(n—2)
0 1(0 2) =as 1%_22> 1%_22>
L L = =
FLKn)=|. " _ . :
In(n—2 In(n—2 In(n—2
0 7(L—2 ) 7(L—2 ) e 0 7(L—2 )
In(n—2) In(n—2) In(n—2) 0
L n—2 n—2 e n—2 -

Then the characteristic equation is

Al ()\ = M>H (A—1In(n—2)) =0

n—2

and therefore the spectrum is

hin-2) In(n —2)
S Kip,1= n—2 .
pecrrpfiin—1 ( n_9 1 1 >

Therefore,
FLE(KLn_l) = 21n(n — 2)
O

Theorem 4.3. Let e be the edge of complete graph K,,. The fraction loga-
rithmic energy of K, — e is

Wlﬂn$+¢(m3““"”>2@nm)CmWQM”UD%

2 n—1 2n —3

Ogso ln[(nfi)i(nfl)]‘] .
Proof. FL(K,, —e) = ( n{(n—2)(n1) () 22

2n—3 ]J”_2X2 n—1 (J - I)("*Q)
Characteristic equation is

A ()\ + M)H ()\2 —(E)A— (2n—4) Fn[(”(%z)_(g) 1)]]2) =0.

n—1

Hence, spectrum is
—(n=Y) ELF E-F
—e) = 2 2 2
Specri(Kn —e) < n-3 1 1 1)
Where E = 2=2In(n — 1)
n—3) In(n—1 2 In(n—2)(n—1 2
F:¢G_%%J),@WJ®C(%Q 1)

Therefore, FLE(K,, —€) is

(n— 1)<n3>+\/(<n3>m<n 1))2 _ (8n—16) (nn(n2><n 1)1)2.

2 n—1 2n — 3
O
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Theorem 4.4. Let e be the edge of complete bipartite graph K, .. The
fraction logarithmic energy of Ky — e is

(n - 1)2 ln(n2 — n) 2
(Knn —e) —(Inn)? +4(n — 1) (= —
0 A
Proof. FL(Kypn—¢)= [ Jmxn
T00f. (Knpn —€) 7o
In(n) In(n(n—1))
Where A= [ Josvxen T Jamnsa
1 Jix(n-) O1x1)
2
Therefore, FLE(K, , —€) = \/_(";1)2 (Inn)2 + 4(n — 1) (111(27:12—_1”)) . 0

5. CONCLUSION

In this paper, we have discussed about fraction logarithmic matrix, and
the fraction logarithmic energy FLE(G) of a graph G. Lower and up-
per bounds are also obtained. The first four coefficients of the polyno-
mial ¢ (G, \) are studied. Fraction logarithmic energy FLE(G) of various
graph structures and complements are investigated. We also mention the re-
lation between energy (based on adjacency matrix) and fraction logarithmic
energy of regular graph.
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