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Abstract. Suppose that {X, X,;,1 < i < n,n > 1} is an array of row-wise widely
negative dependent random variables, There exists a random variable X and a constant
C satisfying E[h(X,;)] < CE[M(X)], E[|X]] < Cy (IX]) < oo. If {ans1<i<nn>1}
is an array of positive real numbers satisfying certain conditions, we obtain the complete
convergence of weighted sums for widely negative dependent random variables under the
sub-linear expectations. This result generalizes and improves the result of Sung(2012a) and
Yi(2021) for widely negative dependent random variables under sub-linear expectations.
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1 Introduction

Complete convergence is a significant area of research field in probability limit theory. The
concept was first introduced by Hsu and Robbins([2]) as follows: a sequence {X,,,n > 1} of

random variables is said to converge completely to some constant c if

D P(Xp—cl>€ <00
n=1
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for all € > 0. According to the Borel-Cantelli lemma, this definition implies that X,, — ¢ al-
most surely (a.s.), and the converge holds if {X,,n > 1} are independent random variables.
Thus, complete convergence is a stronger concept than almost sure convergence. Many
scholars have explored complete convergence in various random variable contexts. For exam-
ple, Wu([13]) studied the complete convergence of independent and identically distributed
random variables, Hu, Rosalsky and Wang([4]) provided complete convergence theorems
for extended negatively dependent random variables. We refer the reader to Peligrad and
Gut([7]), Sung([10],[12]), Shen, Xue and Wang([9]), and so on.

The classical limit theorems are based on the linearity of expectations and probability
measures. In many real-world applications, such as finance, economics and statistics, the
assumption of additivity is not feasible, as uncertainties cannot always be modeled using
additive probabilities or expectations. Consequently, various sub-linear theories have been
developed to describe and measure these risks. Lin and Feng([5]) studied complete con-
vergence and strong law of large numbers for arrays of random variables under sub-linear
expectations. Yi([14]), and Feng, Wang and Wu([3]) investigated complete convergence for
weighted sums of negatively dependent random variables under the sub-linear expectations,
Yu and Wu([15]) studied the Marcinkiewicz type complete convergence for weighted sums
under sub-linear expectations.

This paper focuses on the complete convergence of weighted sums for widely negative
dependent random variables under the sub-linear expectations. This result extends and
enhances the findings of Sung([11]) and Yi([14]) on widely negative dependent random
variables under sub-linear expectations.

This paper is organized as follows: in Section 2, we summarized some basic notations and
concepts, related properties under the sub-linear expectations and present the preliminary
definitions and lemmas that are useful to obtain the main results. In Section 3, we give the

main results including the proof. In Section 4, we give the conclusion.

2 Preliminaries

We use the framework and notations of Peng([8]). Let (£, F) be a given measurable space
and let H be a linear space of real functions defined on (€, F) such that if X1, Xo, -, X, €
H then (X1, X, -+, X,) € H for each ¢ € C) ;(R"), where Cj 1;,(R™) denotes the linear
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space of local Lipschitz functions ¢ satisfying
[p(x) = () < CA+ X[ + y[™)[x — y],¥x, y € R"

for some C' > 0, m € N depending on ¢. H is considered as a space of "random variables”.

In this case we denote X € H.

Definition 2.1. A sub-linear expectation E on H is a function E : H — R satisfying the
following properties: for all X, Y € H we have

(i) Monotonicity: If X >Y then E[X] > E[Y];

(i) Constant preserving: E[c] = ¢;

(iii) Sub-additivity: IE[X +Y] < IE[X] + IE[Y]; whenever IE[X] + IE[Y] is not of the form
+00 — 00 Or —00 + 00;

(iv) Positive homogeneity: E[AX] = AE[X], A >0

Here R = [—o0, 00]. The triple (Q,H, E) is called a sub-linear expectation space.

Given a sub-linear expectation ]E let us denote the conjugate expectation EofE by
E[X]=-E[-X], VX eH.

From Definition 2.1, it is easily shown that

-~

E[X] <E[X], E[X+¢=E[X]+c¢ and E[X —Y]>E[X]-E[Y]

for all X,Y € H with E[Y] being finite. Further, if E[|X|] is finite, then E[X] and £[X] are
both finite, and if IE[X] = E[X], then IE[X +aY] = IE[X] + aIE[Y] for any a € R.
Next, we consider the capacities corresponding to the sub-linear expectations.

Definition 2.2. Let G C F. A function V : G — [0,1] is called a capacity if
V(@) =0, V(Q =1 and V(A4) <V(B) whenever ACB and A,B€g.

It is called sub-additive if V(AU B) < V(A) + V(B) for all A,B € G with AUB € G.
Let (9,7, E) be a sub-linear space. We denote a pair (V, V) of capacities by
V(A) := inf{E[¢] : Iy < &, €€ HY, V(A)=1-V(AY), VAe F,
where A€ is the complement set of A. Then
E[f] < V(A) <Elg] and &[f] <V(4) < E[g], (2.1)

if f<I4<g, f,g€ H. Itisobvious that V is sub-additive, i.e., V(AU B) < V(A) + V(B).
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In this paper we only consider the capacity generated by a sub-linear expectation. Given

a sub-linear expectation space (€2, ’H,IE), we define a capacity:
V(A):=E[I4], VAeF
and also define the conjugate capacity:
V(A):=1-V(A°), VAeF.

It is clear that V is a sub-additive capacity and V(A) = E[14].

Definition 2.3 ([16]) (1) A sub-linear expectation E : % — R is called to be countably

sub-additive if it satisfies

]E[Xn], whenever X < ZXH,X, X, eH,
1 n=1

hE

E[X] <

n

where X > 0,X,, >0and n > 1.

(2) A function V: F — [0,1] is called to be countably sub-additive if

V(UL 4n) <Y V(Ap), VA, € F.
n=1
Definition 2.4. Let X be arandom variable on (Q, F). The upper Choquet integral/expectation
of X induced by a capacity V on F is defined by (Cy,Cy) by
o) 0
Cy(X) = XdV(w):/ V(X>x)dx+/ V(X >z)—1)dez,
Q 0 —00
with V' being replaced by V and V, respectively.
The lower Choquet expectation of X induced by V is given by Cyp[X] := —Cy[—X], which

is conjugate to the upper expectation and satisfies Cy[X] < Cy[X].

For simplicity, we only consider the upper Choquet expectation in the sequel, since the
lower (conjugate) version can be considered similarly.
Lemma 2.5. ([1]) Let X,Y be two random variables on (2, F) and let Cy be the upper
Choquet expectation induced by a capacity V, then, we have

(1) Monotonicity: Cy[X] < Cy[Y] for X <Y

(2) Positive homogeneity: Cy[AX] < ACy[X] for A > 0;

(3) translation invariance: Cy[X + a] < Cy[X] + a for Va € R.

The following lemmas show that some important inequalities in classical probability

theory still hold in sub-linear expectation spaces (See [6]).
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Lemma 2.6. (Markov’s inequality) For any X € H, we have

E[|X|?
V(x| 2 ) < A2

xP
for any x > 0 and p > 0.

Now we give the definition of widely negative dependence on the sublinear expectation
space. The concept of widely negative dependence is introduced by Lin and Feng([5]) as

follows.

Definition 2.7. Let X, X9, -+, Xp41 be real measurable random variables of (€, F).
(1) X4 is called widely negative dependence of (Xi,---,X,) under E if for every non-
negative measure function ¢; with the same monotonicity on R and ]E[@Z(XZ)] < 00,0 =

1,2,--+ ,n+ 1, there exists a positive finite real function g(n + 1) such that
n+1

H%(Xi)] <gn+1)E H%
i=1

(2) {X,}:2, is said to be a sequence of widely negative dependent random variables under E

E [pn41(Xnt1)].-

if for any n > 1, X,,+1 is widely negative dependence of (X1, Xo, -+, Xp).
(3) {Xni,1 <i<mn,n>1} is said to be an array of rowwise widely negative dependent
random variables under E if for any n > 1, {X,;,1 <i < k,} is a sequence of widely negative

dependent random variables

Remark 2.8. For a sequence of widely negative dependent random variables {X;,7 > 1},

we have
E Hcp,(Xl):| < g(n H]E [pi(X;)], where g(n)= H (2.2)
i=1 i=1 i=1

for any n > 1 and every nonnegative measurable function ¢;(-) with the same monotonicity

on R and IE[gaZ )] <o00,i=1,2,--+,n, where g(-) is in Definition 2.7(1).
Remark 2.9. Without loss of generality, we will assume that g(n) > 1 for any n > 1 in
the sequal.

The following lemma is introduced by Lin and Feng([5]).

Lemma 2.10. Suppose that {X;}5°, is a sequence of widely negative dependent ran-
dom variable under E, and {¢i(z)}2, is a sequence of measurable function with the same
monotonicity. Then {;(X;)}i2, is also a sequence of widely negative dependent random
variables.

Throughout this paper, let {X,,n > 1} be a sequence of widely negative dependent

random variables in (Q,H,I@). C will signify a positive constant that may have different
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values in different places. a, = O(b,) and a, < b, denote that for a sufficiently large n,

there exists C' > 0 such that a,, < Cb,, and I(-) denotes an indicator function.

3 Main Results and Proofs

Before we introduce the main results, let us first prove the following lemma.

Lemma 3.1. Let {X,;,1 <4 <n,n > 1} be an array of rowwise widely negative dependent
random variables with IE[Xm} = 0. Let g(x) be a nondecreasing positive function on [0,00)

such that

g(z) =g(n) when z=mn, g(0)=1 and 9(=) 1 for some 0 <7 < 1. (3.1)

x‘l’

Assume that

] 1
pax | Xni| = O(log™ n) (3.2)
and
> E[X2] = o(log ™ n), (3.3)

Then, for any € > 0 we have

iv (zn:Xm > e) < 0.
n=1 i=1

Proof. Since 1+z <e* <1+z+ %xQem for all x € R, then we have from (3.2) and
E[X,;] = 0 that Vk > 0,

~ ~ 1
E[exp(kXn)] <E {1 + kX + §k2|Xm-|2 exp(k|Xm-|)}
<1+

KE [| X exp(k| Xi])]

Note that

i=1

|
exp {E [Z Xm-] } <exp { nl E[X,.; } - ﬁexp {ﬁ[xm-]} :
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we have from Markov’s inequality, (3.1), (3.3) and (3.4) that Yk > 0,

n n
\% <Z X > e) < e E |exp <k Xmﬂ
=1

=1
< g(n)eike H E [exp (ka)]
=1

1 n N
~ —k 2 ck/1 2
< g(n)e Eexp{ik e° /ognZ]E“Xm-\ ]}

i=1

< e‘rlogn—ke exp {%erck/logno(log—l n)} .

Let k£ = “T'H logn for all @ > 2 and when n is big enough, we obtain that

n 2
1 1 cla+1)
A\ ( E Xni > €> < erlogn—(at)logn oy {5 (a—i— log n) e o(log™? n)}

i=1

< erlogn—(a+1)lognelogn _ ,—(a—=T)logn

e
< ni(QiT),
and we can show that
ZV (ZX"Z > e) < 0.
n=1 i=1

Thus Lemma 3.1 holds. [
We now introduce our main result as follows.

Theorem 3.2. Suppose that {X, Xp;,1 < i < n,n > 1} is an array of rowwise widely

negative dependent random variables, there exist a r.v. X and a constant C satisfying

E[h(X,)] < CE[A(X)] for alln>1, 1<i<n, 0<he CprpR). (3.5)

Further assume that
E[|X]] < Oy (|X]) < oo. (3.6)
Let g(x) be a nondecreasing positive function on [0,00) such that

g(x)

g(z) = g(n) when x=n, §G0)=1 and =——*| for some 0 <7 <1.
IT

Assume that {an;;1 < i <mn,n > 1} is an array of positive real numbers satisfying

> ani=0(n) (3.7)
i=1
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for some v > 0 and

Z aiiﬁ [th(am-Xlog n)| = o(log™1 n). (3.8)
i=1

Then for any € > 0, any positive integer number N with Ny > 2, we have

iV (i Cnji (Xni - ]E[XMD 1 (|ame| < %) > e) < 00 (3.9)
n=1 i=1

and

o0 n
v (Z i (Xm - E[Xm]) I (\am-Xm-\ < %) < e) < . (3.10)
n=1 i=1

Proof. When we replace {X,;,1 <4 <n,n > 1} with {—X,,;,1 <i <n,n>1}in (3.9), we
can have (3.10). If {X,;,1 <14 <n,n > 1} is an array of rowwise widely negative dependent
random variables, then {—X,;,1 <i < n,n > 1} is also an array of rowwise widely negative
dependent random variables. Therefore, we just need to prove (3.9). Without loss of

generality, we assume that I/E\‘,[Xm} =0. Forn>1and 1<i<n,we define
XY = Xpil (|ani Xl < (logn)™") + ;) (logn) ™' (ani Xpi > (logn) ")
—a,;} (logn) "I (aniXni < —(logn)™"),

_ _ _ €
XD = (Xoi — az!(logn) ™) T ((logn) ™" < apiX: < N) : (3.11)

XT(S.’) = (Xni + a_l(logn)fl) I (—% < aniXn; < —(logn)*l) )

ni

Xf:? = —a,; (logn)~'I (am'Xm' > %) +a,}(logn)~'1 (am-Xm- < _%> )

It is obvious from (3.11) that
€
aannz[ (|aann2| < N) = aanT(Li) + aan,(j) + aanS) + aniX,,(:Zl')»
which yields

nz::lv (; i X il (|am~Xm\ < %) > 46)
o0

n o0 n
< ZV < am'Xfi) > e) + ZV (Z ang) > 6) (3.12)
n=1 1 n=1 i=1

i=
oo

n oo n

+ ZV < ameZ) > 6) + ZV (Z aer(;l) > 6) .
n=1 i=1 n=1 i=1

We define the function h(z) € Cj 1;p(R) as follows. For 0 < u < 1, let h(z) € C; 1;p(R)

be a nonincreasing function such that 0 < h(z) < 1 for all z and h(z) = 1 if |z| < g,

h(z) =0if |z| > 1, then

I(a] < p) < ha) <I(al 1), Izl > 1) <1—h(e) < I(e| >p).  (313)
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According to (3.5), (3.13) and C,-inequality, we have

E [\X,i?\r] < B[|X|"h (pani X logn)] + a7 (logn) "B [1 — h (an; X logn)]

< B [ X]|"h (pani X logn)] + a,; (logn)™"V (\aniX| > pu(log n)*l) .

(3.14)

It follows easily from Lemma 2.10 that {am'X,g)} is an array of rowwise widely negative

dependent random variables. From Markov’s inequality, (3.5) — (3.8) and (3.14), we have

i=1

From Lemma 3.1, we have
o0 n

v i (X R [x >6) < o0.
o (S (081321 - 5) <

Note that if ‘Z?:l anill [Xfi)} ‘ — 0 as n — oo, then > > |V (Z?:l am»Xr(L? > e) < oo. It
follows from (3.5) and (3.7) that

which gives

n ~
E am-IE |:
=1

X0

<

S8 fons (50 - E[x))] < St [2 (x0) +2 (E[x2])]

+ (logn) ™2V (JanX| > p(logn)™)
i=1

< o((logn)™") + (logn) ™ Y amE [ X|]
i=1

< o((logn)™") + (logn) "' O(n™")Cy (|X])

= o{(logn) ™).

s (B 8] - 21321

> aniE [\Xm' - Xq(;)l]
i=1

<" an [|X| (1 = h(anX logn))]

<

IN

ol

~
—

3

anlE [|X]]
i=1

On™)—=0 as n— oo,

n
S anxly > e) < 0.
i=1

(3.15)
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We next prove » o>V (Z?:l am»Xg) > e) < oo. It follows from ij) of (3.11) that

2
x|

Zam '> e

which implies that there exists at least one positive integer N such that Xm # 0. By
(2.1),(2.2), (3.5), (3.13) and Markov’s inequality, we can obtain

\% (i amX,(j) > e)
=1
Soov(xf Ao xR #0)

1<k <-<kn<n

Z A% (|ank1Xn/C1| > (log n)717 ) |a”kNXnkN| > (lOg n)il)
1<ki1<--<kn<n

S E[(1 = h(ank, Xok, logn)) - (1= h (anky Xnky logn))]

1<ki1<--<kn<n

Z g(N)ﬁﬁ[l—h(ankinognﬂ
i=1

1<ki<--<kn<n

N
gy > IV (lank X1 > p(logn) ™)

1<ky < <ky<ni=1

IN

IN

IN

IN

IN

n N
<g(n) | YV (JanX]| > u(logn)l)}
k:l N
<§(n) {Z apy, log nE [| X ]
k=1

< gm)(logm)Vn N [B (1]
< C’n_(WN_T)(log n)™

which gives
ZV (Z aniX? > e) < o00. (3.16)
By the same methods as (3.16), we can get

v <Z 4 XD > e> < 0. (3.17)
n=1 i=1

We finally will prove that

oo n
ZV (Z anin(é) > e) < 0. (3.18)
i=1

n=1
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If follows from (3.11) that
xW < -1 Xol> <)< £
ani Xy < (logm) 1 (JaniXuil > ) < .

thus there are at least N subscripts k such that |a,; X,;| > ¢/N. Therefore, by Markov’s
inequality, (3.5) — (3.7), we have for YN > 2,

iv (inl 4 XY > e> < Z {Z (Jani x| > N)} :

: o fS

[0 B

N
E [|X] (ne/N)~ ]}

HM:

;

< Z

< Zn’(VN’T) < 0.
n=1

Combining (3.12) with (3.15) — (3.18) we get (3.9), which completes the proof.

4  Conclusion

In this article, we establish complete convergence for weighted sums of widely negative
dependent random variables under sub-linear expectations. This result generalizes and
improves upon the work of Sung (2012a) and Yi (2021) on widely negative dependent random
variables under sub-linear expectations. The proof is achieved under significantly weaker
conditions, thereby extending the strong limit theorems within the framework of sub-linear
expectations or Choquet expectations. This generalization enhances the applicability of

sub-linear or Choquet expectation in the simulation of financial phenomena.
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