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COMBINATORIAL GENERATION ALGORITHMS FOR
DISCRETE STRUCTURES ASSOCIATED WITH
THE FUBINI NUMBERS

YURIY SHABLYA, VADIM POLYUGA, AND DMITRY KRUCHININ

ABSTRACT. This article demonstrates the application of the method
based on AND/OR trees in order to obtain new combinatorial generation
algorithms for combinatorial objects associated with the Fubini num-
bers. Using three different formulas for calculating the Fubini numbers
that satisfy the restrictions of the method applied, the corresponding
structures of AND/OR trees were constructed. The number of variants
of the constructed AND/OR trees is the same as the value of the cor-
responding Fubini number. This fact made it possible to determine
bijection rules between the combinatorial sets associated with the Fu-
bini numbers and the variants of the obtained AND/OR tree structures.
Applying the method based on AND/OR trees, we develop three differ-
ent sets of algorithms for ranking and unranking the combinatorial sets
associated with the Fubini numbers. We also show that the developed
algorithms have polynomial time complexity and differ in the ordering
of the elements of the combinatorial set.
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1. INTRODUCTION

Special numbers are numbers that often appear in various mathematical
contexts. This article is devoted to the study of special numbers called
the Fubini numbers (or the ordered Bell numbers). The Fubini numbers,
denoted by F,, are the following sequence of integers for n > 0 (sequence
A000670 in OEIS [1]):

1,1,3,13,75, 541, 4683, 47293, 545835, 7087261, 102247563, . . .

The Fubini numbers are important in discrete mathematics because they
have a whole set of different combinatorial interpretations. For example,
the Fubini number F), equals to the number of:

e Dense rankings of n items that can be represented as sequences of
the form (ay,...,a,) where each a; shows the place of the i-th item
in the ranking of n items (cf. [2]);

e Weak orders on n labeled elements (cf. [3]);

The reported study was supported by the Russian Science Foundation (project no.
22-71-10052).
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e Ordered partitions of n elements that can be represented as se-
quences of the form (si,s2,...) where each s; is a subset of a set
of n elements (cf. [4, 5]);

e Plane trees with n + 1 leaves where root-to-leaf paths have the same
length and the number of nodes at distance i from the root must be
strictly smaller than the number of nodes at distance i + 1 (cf. [6]).

Table 1 presents examples of combinatorial sets associated with the Fubini

number F3 = 13. The Fubini numbers are also related to many other special
numbers (¢f. [7, 8, 9, 10, 11, 12]).

TABLE 1. Examples of combinatorial sets associated with
the Fubini number F3 = 13

Dense ranking | Weak order on Ordered partition | Plane tree
of 3 items 3 labeled elements of 3 elements with 4 leaves

1,1,1 a=b=c {a,b,c} 0/./‘\0\0

1,1,2 a=b>c {a,b},{c} /:<-\=
1,2,1 a=c>b {a,c}, {b} K)\
2,1,1 b=c>a {b,c},{a} /:>\-

1,2,2 a>b=c {a},{b,c} s 0 5 °
o« i
2,1,2 b>a=c {b},{a,c} ° ® e

2,2,1 c>a=b {c},{a,b} {E?\.

°* o
1,2,3 a>b>c {a}, {b},{c} ‘o o o
v
1,3,2 a>c>b {a},{c}, {b} ‘: :
e
2,1,3 b>a>c {b},{a},{c} (?0 I
"
2,3,1 c>a>b {c}, {a}, {b} oo .A.
o
3,1,2 b>c>a {b},{c}, {a} : ¢ °

3,2,1 c>b>a {c}, {b},{a} E/'f\‘}.
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Since the values of the Fubini numbers F,, grow rapidly as the parame-
ter n increases, it becomes difficult to organize the process of constructing
objects of combinatorial sets associated with the Fubini numbers. Combi-
natorial generation algorithms make it possible to obtain a complete set of
elements for a given discrete set (¢f. [13]). Note that in the field of combi-
natorial generation there are no studies that address the issue of developing
combinatorial generation algorithms for combinatorial sets associated with
the Fubini numbers. Therefore, the main goal of this article is to develop
new combinatorial generation algorithms for ranking and unranking combi-
natorial sets associated with the Fubini numbers.

2. MATERIALS AND METHODS

Combinatorial generation is a scientific direction that studies combina-
torial sets and algorithms for their generation. For example, it is possible
to number the elements of a given combinatorial set based on some their
ordering. In this case, the number of an element in the ordering is called
a rank, and the numbering process is called a ranking. The inverse oper-
ation is called unranking (that is, the generation of an element of a given
combinatorial set using its rank). In addition, there is a class of algorithms
for the exhaustive generation of all elements of a given combinatorial set.
The application of such algorithms makes it possible to generate fast com-
binatorial objects belonging to the considered set of discrete structures.

For various combinatorial sets there are many combinatorial generation
algorithms that are ready-to-use (for more details, see [14, 15]). There are
also several general methods that can be applied to develop new combinato-
rial generation algorithms (such as the backtracking method [13], the ECO
method [16], the Flajolet method [17], and others). Each such method has
its own advantages and disadvantages. In this paper, to develop new com-
binatorial generation algorithms, we study the application of the method
based on AND/OR trees since it allows the development of ranking and
unranking algorithms and requires only the cardinality function of a given
combinatorial set (cf. [18, 19, 21]).

The application of the considered method based on AND/OR trees is
limited by the need to have an expression for the cardinality function of a
given combinatorial set that can contain only the following operations and
operands: positive integers, addition and multiplication operations, and re-
cursive calls. In our previous work [20], we showed that the following formu-
las are known for calculating the Fubini numbers, and each of them satisfies
the requirements of the considered method for developing combinatorial gen-
eration algorithms:

e Based on the binomial coefficients C¥ (cf. [4]):
n
(1) Fo=Y CkFy 4, FRo=1,
k=1

where
Ch=Ct,+Cl, n=cl=1

n
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e Based on the Stirling numbers of the second kind S¥ (cf. [5]):

(2) Fo=> KISk,
k=1

where
Sp=kSy_y+ 571, Sp=5,=1,

El=Fk-(k-1), ol=1,
e Based on the Eulerian numbers of the first kind EF (cf. [22]):

n—1
(3) F,=Y 2"E},
k=0
where
By =(k+1)E}_,+(n—-kE:], E'=E)=1,

ok —9.0k"1 90—,
Since each of the presented expressions for calculating the Fubini num-
bers satisfies the requirements of the considered method, it is possible to

construct corresponding AND/OR tree structures.
AND/OR tree structures have two kinds of nodes:

e an OR node corresponds to the addition operation in the cardinality
function expression and shows the union of combinatorial subsets;

e an AND node (represented by a node whose edges to child nodes
are connected by an additional arc) corresponds to the multipli-
cation operation in the cardinality function expression and shows
the Cartesian product of combinatorial subsets.

In addition, each positive integer in the cardinality function corresponds
to an OR node whose number of child nodes is equal to the value of this
integer. A subtree of an AND/OR tree node (including one obtained by
a recursive call) is represented in the form of a triangle node. Examples of
AND/OR tree structures are presented in the figures of this article.

Each AND/OR tree structure has a fixed number of its variants that
is equal to the value of the corresponding cardinality function. To obtain
a variant of an AND/OR tree, it is necessary to leave only one child node for
each OR node (the remaining child nodes of the OR node and their subtrees
are deleted).

Next, we consider in detail the representation of combinatorial sets as-
sociated with the Fubini numbers in the form of the set of AND/OR tree
variants. In this case, the number of variants of the obtained AND/OR tree
structures is equal to the value of the corresponding Fubini number.

3. MAIN RESULTS

In this section, using the above three formulas for calculating the Fubini
numbers, we construct the corresponding structures of AND/OR trees and
determine bijection between the combinatorial sets associated with the Fu-
bini numbers and the variants of the obtained AND/OR trees. Then, we
develop three different sets of algorithms for ranking and unranking the com-
binatorial sets associated with the Fubini numbers.
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3.1. AND/OR tree for F,, based on formula (1). Firstly, applying
formula (1), we construct the corresponding AND/OR tree structure for F,,
(see Figure 1).

FIGURE 1. An AND/OR tree for F), based on formula (1)
and its subtree for C*

Figure 2 presents an example of this AND/OR tree structure for n = 3.
The set of all variants of this AND/OR tree structure consists of F3 = 13
elements.

) SHPS
(@ ) O @)
000

FIGURE 2. An AND/OR tree for F3 based on formula (1)
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It is proposed to encode a variant of the AND/OR tree for F;, based on
formula (1) by a sequence v = (K, v, vp), where:
e an empty sequence v = () corresponds to the selection of a leaf Fp;
e K corresponds to the selected value of k in the AND/OR tree for F,;
e vo corresponds to the variant of the subtree of the node C¥ that is
encoded by a sequence v = (ve1, voe, - - .), Where:
— an empty sequence v = () corresponds to the selection of a leaf
Cn or CY
— ve; = 0 corresponds to the selection of the left child of the node
at i-th level of the subtree of the node C¥;
— v = 1 corresponds to the selection of the right child of the node
at i-th level of the subtree of the node C¥;
e v corresponds to the variant of the subtree of the node F;,_.

Theorem 3.1. There is a bijection between the set of weak orders on n
labeled elements and the set of variants of the AND/OR tree for F, from
Figure 1.

A bijection between the weak orders on n labeled elements and the vari-
ants of the AND/OR tree for F), from Figure 1 is defined by the following
rules:

e a leaf Fy corresponds to an empty weak order;

e the selected child of the OR node F;, determines the number k of
elements that together have the last place in the weak order on n
labeled elements;

e the subtree of the node C¥ determines which k elements out of n
elements together have the last place in the weak order on n labeled
elements:

— vo = () for a leaf C7' means that all n elements were selected;

— vo = () for a leaf CO means that all n elements were unselected;

— vei = 0 for a node C*¥ means that the n-th element was unse-
lected;

— veo; = 1 for anode C,’i means that the n-th element was selected;

e the subtree of the node F;,_j determines the weak order on remaining
(n — k) labeled elements.

Table 2 presents an example of representing weak orders on 3 labeled
elements by variants of the AND/OR tree for F3 from Figure 2. Similarly, it
is possible to derive a bijection between the set of variants of the AND/OR
tree for F,, from Figure 1 and any other combinatorial set associated with
the Fubini numbers.

Applying the obtained AND/OR tree structure for F,, we develop algo-
rithms for ranking (Algorithm 1) and unranking (Algorithm 2) its variants.
Table 2 presents an example of ranking the variants of the AND/OR tree
for F3 from Figure 2. Thus, using the developed ranking algorithm and
bijection rules, it is possible to number a given combinatorial object belong-
ing to the combinatorial set associated with Fubini numbers. In addition,
using the developed unranking algorithm and bijection rules, it is possible
to generate objects of such a combinatorial set (generation of objects with
given rank values or exhaustive generation by considering all rank values).
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TABLE 2. Example of representing weak orders on 3 labeled
elements by variants of AND/OR tree for F5 from Figure 2

Weak order on Variant of AND/OR tree | Rank
3 labeled elements for F3 from Figure 2
a=b=c (3,0,0) 12
a=b>c (1’(1)7(27 ()’())) 8
a=c>b (1’(0’1)’(2’ ()7())) 7
b=c>a (1’(0’0)’(2’ ()7())) 6
a>b=c (2,(1,1),(1,0,0)) 11
b>a=c (2,(1,0),(1,0,0)) 10
c>a=b (25(0)7(17()’())) 9
a>b>c (1,(1),1,1),1,0,0)) | 5
a>c>b (1,(0,1), (1, (1), (1,0, 0)) | 4
b>a>c (1,(1),(1,00),1,0,0)) | 2
c>a>b (1,(0,1),(1,(0), (1,0, 0)) | 1
b>c>a (1,(0,0),(1,(1), (1,0, 0) | 3
c>b>a (1,(0,0), (1,(0), (1,0, 0N | 0

Algorithm 1: Algorithms for ranking a variant of the AND/OR tree
for F,, based on formula (1)

Rank_F (v = (K, vc, vr), n)

begin
if n=0thenr:=0
else
sum =0

for k:=1to K —1do

| sum = sum + CFF,_4
end
l; ;= Rank_C (v, n, K)
ly := Rank F (vp, n — K)
ri= sum+l1+C’7{<~lg
end

return r
end

Rank C (v = (v, v2,...), n, k)
begin
ifk=nork=0thenr:=0
else
if v1 =0 then r := Rank C((v3,...), n— 1, k)
else 7 := C*_|+ Rank C((v2,...),n — 1,k —1)
end

return r
end
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Algorithm 2: Algorithms for unranking a variant of the AND/OR
tree for F,, based on formula (1)

Unrank F (r, n)

begin

if n =0 then v := ()

else

for k:=1 ton do
sum = C’,’an,k
if r < sum then

‘ K=k
break

end

Ti=71 — sum

end
li ;=7 mod CK

b= ||

ve = Unrank C (Iy, n, K)
vp := Unrank F (I, n — K)
v:= (K,vc,vF)

end

return v
end

Unrank C(r, n, k)
begin
if k=n ork=0then v:= ()
else
if » < C* | then v :=concat ((0), Unrank C(r, n — 1, k))
else v :=concat ((1), Unrank C(r — C*_;, n — 1, k — 1))
end

return v
end

3.2. AND/OR tree for F, based on formula (2). Next, applying for-
mula (2), we construct the corresponding AND/OR tree structure for F,
(see Figure 3).

Figure 4 presents an example of this AND/OR tree structure for n = 3.
The set of all variants of this AND/OR tree structure consists of F3 = 13
elements.
It is proposed to encode a variant of the AND/OR tree for F,, based on
formula (2) by a sequence v = (K, vy, vg), where:

e an empty sequence v = () corresponds to the selection of a leaf Fp;
e K corresponds to the selected value of k in the AND/OR tree for Fy;
e vy corresponds to the variant of the subtree of the node k! that is

encoded by a sequence vk = (v1,...,v;) of labels of the selected

children of the OR nodes k;
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FIGURE 3. An AND/OR tree for F}, based on formula (2)
and its subtrees for k! and S¥

S &) )
SOOI OO NN O
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OROO 9000
©

FIGURE 4. An AND/OR tree for F3 based on formula (2)
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e vg corresponds to the variant of the subtree of the node S¥ that is
encoded by a sequence vg = (Kg,vgg), where:
— an empty sequence vg = () corresponds to the selection of a leaf
S" or S}
— if Kg = 0, the right child of the OR node S¥ is selected and
vss corresponds to the variant of the subtree of the node S*~1;
— otherwise, Kg corresponds to the selected value of k in the sub-
tree of the node Sﬁ and wvgg corresponds to the variant of
the subtree of the node S']Tffl.

Theorem 3.2. There is a bijection between the set of weak orders on n
labeled elements and the set of variants of the AND/OR tree for F, from
Figure 3.

A Dbijection between the weak orders on n labeled elements and the vari-
ants of the AND/OR tree for F), from Figure 3 is defined by the following
rules:

e a leaf Fjy corresponds to an empty weak order;

e the selected child of the OR node F,, determines the number k of
subsets of elements where all elements of each subset have the same
place in the weak order on n labeled elements;

e the subtree of the node S¥ determines the partition of a set of n
elements into k non-empty subsets:

— vg = () for a leaf S]' means that n elements were divided in n
singleton subsets;

— vg = () for a leaf S} means that n elements were combined into
one set;

— Kg =0 for a node S¥ means that the n-th element alone forms
the k-th subset, and the remaining (n—1) elements form the re-
maining (k — 1) subsets;

— Kg > 0 for a node S¥ means that the n-th element together with
others forms the Kg-th subset together with other elements, and
the remaining (n — 1) elements form the remaining k subsets;

e the subtree of the node k! determines the order on k subsets of
elements as a permutation of k elements:

— a leaf 0! corresponds to an empty permutation;

— v1 for a node k! means that the k-th element occupies the vi-th
position in the permutation of k£ elements, and the remaining
(k — 1) elements occupy the remaining (k — 1) positions.

Table 3 presents an example of representing weak orders on 3 labeled
elements by variants of the AND/OR tree for F5 from Figure 4. Similarly, it
is possible to derive a bijection between the set of variants of the AND/OR
tree for F), from Figure 3 and any other combinatorial set associated with
the Fubini numbers.

Applying the obtained AND/OR tree structure for F,, we develop algo-
rithms for ranking (Algorithm 3) and unranking (Algorithm 4) its variants.
Table 3 presents an example of ranking the variants of the AND/OR tree
for F3 from Figure 4.
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Algorithm 3: Algorithms for ranking a variant of the AND/OR tree
for F,, based on formula (2)

Rank F (v = (K, vk, vg), n)

begin
if n=0thenr:=0
else
sum :=0

for k:=1to K —1do
| sum = sum + k!Sk

end

l; := Rank K (vg, K)

ly := Rank_S (vg, n, K)

ri=sum-+1l; + K! Iy

end

return r
end

Rank X (v = (v1,...,0k), k)

begin
if k=0thenr:=0
else
l1 =V — 1
ly ;== Rank K ((ve,...,vg), k—1)
ri=0+k-ly
end
return r
end

Rank_S (v = (Kg,vss), n, k)

begin
if k=nork=1thenr:=0
else
if Kg > 0 then
lh:=Kg¢g—1
ly ;= Rank_S (vgs, n — 1, k)
ri=0L+k-1l
end
else
sum = kSﬁfl
l3:= Rank S (vgg, n — 1, k — 1)
r = sum + 3
end
end
return r

end
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Algorithm 4: Algorithms for unranking a variant of the AND/OR
tree for F,, based on formula (2)

Unrank F (1, n)
begin
if n =0 then v:= ()
else
for k:=1 ton do
sum = kISF
if r < sum then

’ K=k
break
end
ri=7r—sum
end
l1 :=r mod K!

2 := | %)

vk := Unrank K (11, K)
vg := Unrank_S (I3, n, K)
vi= (K7 UkhUS)

end

return v
end

Unrank K (7, k)
begin
if k=0 then v := ()
else
l1:=7r mod k
b=
v :=concat ((I; + 1), Unrank K (I, k — 1))
end

return v
end

Unrank S (7, n, k)

begin
if k=nork=1thenv:=()
else
sum = kSk_,
if r < sum then
l1 :=7r mod k
b= 7]
Ks =1 +1
vgg := Unrank S (lo, n — 1, k)
end
else
l3 ;=1 — sum
Kg:=0
vgs := Unrank S(ls, n — 1,k — 1)
end
v:=(Kg,vss)
end
return v

end
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TABLE 3. Example of representing weak orders on 3 labeled
elements by variants of AND/OR tree for F3 from Figure 4

Weak order on | Variant of AND/OR tree | Rank
3 labeled elements for F3 from Figure 4
a=b=c (1,(1),0) 0
a=b>c (2,(2,1),(0,0))) 6
a=c>b (2,(2,1),(1,0)) 2
b=c>a (27(171)7(27 ())) 3
a>b=c (2,(2,1),(2,0)) 4
b>a=c (2,(1,1),(1,0)) 1
c>a="b (27(171)7(07 ())) 5
a>b>c ( 7(37271)7()) 12
a>c>b (37 (2727 1)7()) 11
b>a>c (3,(3,1,1),0) 9
c>a>b (37(1727 1)7()) 10
b>c>a (37(27171)7()) 8
c>b>a (3,(1,1,1),0) 7

3.3. AND/OR tree for F, based on formula (3). Finally, applying
formula (3), we construct the corresponding AND/OR tree structure for F,
(see Figure 5). Figure 6 presents an example of this AND/OR tree structure
for n = 3. The set of all variants of this AND/OR tree structure consists of
F3 = 13 elements.
It is proposed to encode a variant of the AND/OR tree for F,, based on
formula (3) by a sequence v = (K, vgr, vg), where:
e an empty sequence v = () corresponds to the selection of a leaf Fp;
e K corresponds to the selected value of k in the AND/OR tree for F;
e v,y corresponds to the variant of the subtree of the node 2* that is
encoded by a sequence vor = (v1,...,v) of labels of the selected
children of the OR nodes 2;
e v corresponds to the variant of the subtree of the node EF that is
encoded by a sequence vy = (Kg,, Kg,,vgg), where:
— an empty sequence vg = () corresponds to the selection of a leaf
E1or EY;
— if K, = 1, then the left child of the OR node E¥ is selected,
KF, corresponds to the label of the selected child of the OR
node (k + 1), vgg corresponds to the variant of the subtree of
the node EF_;
— if Kg, = 2, then the right child of the OR node E’g is selected,
K, corresponds to the label of the selected child of the OR
node (n — k), vgg corresponds to the variant of the subtree of
the node Esj

Theorem 3.3. There is a bijection between the set of weak orders on n
labeled elements and the set of variants of the AND/OR tree for F, from
Figure 5.
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FIGURE 5. An AND/OR tree for F,, based on formula (3)
and its subtrees for 2¥ and EF

FIGURE 6. An AND/OR tree for F3 based on formula (3)
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A Dbijection between the weak orders on n labeled elements and the vari-
ants of the AND/OR tree for F), from Figure 5 is defined by the following
rules:

e a leaf Fjy corresponds to an empty weak order;

e the selected child of the OR node F,, determines the number k of
ascents in the permutation of n elements that determines the order
of the elements in the weak order on n labeled elements;

e the subtree of the node EF determines the permutation of n elements
with k ascents:

— vg = () for a leaf E"~! means that n elements were arranged
in ascending order;

— v = () for a leaf EY means that n elements were arranged in
descending order;

— Kg, = 1 for a node EF means that the n-th element does not
add an ascent in the permutation of the remaining (n — 1) ele-
ments, and Kp, determines the position of the n-th element in
the permutation (there are (k + 1) possible such positions);

— Kp, =2 for anode E¥ means that the n-th element add an as-
cent in the permutation of the remaining (n — 1) elements, and
K, determines the position of the n-th element in the permu-
tation (there are (n — k) possible such positions);

e the subtree of the node 2* determines the need to equate the elements
arranged at the place of the k-th ascent:

— a leaf 20 corresponds to doing nothing with permutation;

— v = 1 for a node 2F means that the elements arranged at the place
of the k-th ascent have different places in the weak order;

— vy = 2 for anode 2F means that the elements arranged at the place
of the k-th ascent have the same place in the weak order.

TABLE 4. Example of representing weak orders on 3 labeled
elements by variants of AND/OR tree for F3 from Figure 6

Weak order on | Variant of AND/OR tree | Rank
3 labeled elements for F3 from Figure 6
a=b=c (2,(2,2),0) 12
a=b>c (2,(2,1),0) 10
a=c>b (17( )7(1727())) 4
b=c>a (17(2)7(2717())) 6
a>b=c (2,(1,2),0) 11
b>a=c (17( )7(2727())) 8
c>a="> (17(2),(1’17())) 2
a>b>c (2,(1,1),0) 9
a>c>b (17(1)7(1727 ())) 3
b>a>c (17(1)»(2727 ())) 7
c>a>b (17(1)7(1717())) 1
b>c>a (17(1)7(2717())) 5
c>b>a 0,0,0) 0
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Table 4 presents an example of representing weak orders on 3 labeled
elements by variants of the AND/OR tree for F3 from Figure 6. Similarly, it
is possible to derive a bijection between the set of variants of the AND/OR
tree for Fj, from Figure 5 and any other combinatorial set associated with
the Fubini numbers.

Applying the obtained AND/OR tree structure for F,, we develop algo-
rithms for ranking (Algorithm 5) and unranking (Algorithm 6) its variants.

Algorithm 5: Algorithms for ranking a variant of the AND/OR tree
for F,, based on formula (3)
Rank F (v = (K, vk, vg), n)

begin
if n =0 then r:=0
else
sum =0

for k:=0to K —1do
| sum := sum + 2FEF
end
Iy := Rank_2K (vgr, K)
ly := Rank.E (vg, n, K)
ri=sum+1l +25 .1y
end

return r
end

Rank 2K (v = (v1,...,0k), k)
begin
if k=0 thenr:=0
else
ll =V — 1
ly := Rank 2K ((va,...,vg), kK — 1)

ri=101+2-1I
end
return r
end
Rank E (v = (Kg,, Kg,,vEE), 1, k)
begin
ifk=n—1o0ork=0thenr:=0
else
if Kg, =1 then
ll = KE2 -1
ly := Rank E (vgg, n — 1, k)
TZ:l1+(k+1)'l2
end
else
sum = (k+ 1)EF_;
13 = KE2 -1
ly :=Rank E(vgg, n—1, k—1)
ri=sum+lzs+(n—=Fk)
end
end
return r

end
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Algorithm 6: Algorithms for unranking a variant of the AND/OR
tree for F), based on formula (3)

Unrank F (1, n)

begin

if n =0 then v := ()

else

for k:=0ton—1do
sum := 2FEk
if » < sum then K := k, break
ri=1—sum

end
[y ;=7 mod 2K
b= |5%]

vgr := Unrank 2K (I, K)
vg := Unrank E (I, n, K)
v = (K, vgr,vE)

end
return v
end
Unrank 2K (7, k)
begin
if k=0 then v := ()
else

l1 :=7r mod 2

o= [5]

v :=concat ((I; + 1), Unrank 2K (I3, k — 1))

end
return v
end
Unrank E (7, n, k)
begin
if k=n—1ork=0thenv:=()
else
sum = (k+1)EF_,
if r < sum then
l1:=7r mod k+1
ly = k-THJ
KE1 =1
KE2 = ll +1
vpp := Unrank E (I, n — 1, k)
end
else
ri=1r—sum
l3:=r modn—k
Ak
KE1 =2
KE2 = 13 + 1
vpg = Unrank E(ly,n — 1,k — 1)
end
v i= (KEHKEWUEE)
end
return v

end
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4. CONCLUSION

As the main result of this article, we have obtained new combinatorial gen-
eration algorithms for combinatorial sets associated with the Fubini numbers
using the method based on AND/OR trees. Since each of the presented ex-
pressions for calculating the Fubini numbers satisfies the requirements of
the considered method, the corresponding AND/OR tree structures were
constructed. The number of variants of the constructed AND/OR tree
structures is equal to the value of the corresponding Fubini number. This
fact made it possible to determine bijection rules between the weak or-
ders on n labeled elements (this is one of the combinatorial sets associated
with the Fubini numbers) and the variants of the AND/OR tree for F,.
Applying the obtained AND/OR tree structures for F,, we develop three
different sets of algorithms for ranking and unranking its variants. Thus,
the combinatorial generation algorithms for the combinatorial sets associ-
ated with the Fubini numbers were obtained. The developed algorithms
have polynomial time complexity and differ in the ordering of the elements
of the combinatorial set. Table 5 presents the comparison of the obtained
ways of ordering weak orders when using different ranking and unranking
algorithms.

TABLE 5. Comparison of the obtained ways of ordering weak
orders when using different ranking algorithms

Rank | Algorithm 2 | Algorithm 4 | Algorithm 6
0 c>b>a a=b=c c>b>a
1 c>a>b b>a=c c>a>b
2 b>a>c a=c>b c>a=b
3 b>c>a b=c>a a>c>b
4 a>c>b a>b=c a=c>b
5 a>b>c c>a=b b>c>a
6 b=c>a a=b>c b=c>a
7 a=c>b c>b>a b>a>c
8 a=b>c b>c>a b>a=c
9 c>a=5> b>a>c a>b>c
10 b>a=c c>a>b a=b>c
11 a>b=c a>c>b a>b=c
12 a=b=c a>b>c a=b=c
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