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UNIQUENESS OF MEROMORPHIC FUNCTION AND ITS DIFFERENCE
POLYNOMIAL OF DIFFERENCE OPERATOR SHARING ONE OR MORE SETS
WITH FINITE WEIGHT

CHAITHRA C.N.'*, JAYARAMA H.R. 24, RAGHUNATHA REDDY B.2JAND NAVEENKUMAR
S.H.3

Abstract. In this paper, we mainly investigate the uniqueness property of meromorphic functions
together with its difference polynomial of difference operator with finite weight sharing one or two sets.
With the help of range set introduced in Banerjee and Chakraborty (Jordan J Math Stat 117-139. 2016),
we have improved the result of Goutam Haldar (J Anal 2022. 1-17) and obtain the unique range set

corresponding to shift operators. The examples is exhibited to validate certain claims of the main result.

1. Introduction, Definitions and Results

Let ¢ and § be two non-constant meromorphic functions defined on the set of complex numbers C,
and a € CU {occ}. we say that ¢ and § share the value a CM (counting multiplicities) if ¢ — a and § — a
have the same set of zeros with the same multiplicities, and if we do not count the multiplicities, then ¢

and § are said to share the value a IM (ignoring multiplicities).

Throughout the paper, we have used the standard notations and definitions of value distribution
theory of meromorphic functions introduced in [8]. We recall that T'(r, ¢) denotes the Nevanlinna char-
acterstic function of the non-constant meromorphic function. Also we denote by S(r,¢) any quan-
tity satisfying T'(r, ¢) = o(T'(r,¢)) as r — oo possibly outside a finite set of logarithmic measure and
N(r,a; ¢)(N(r,a; $)) denotes the counting function (reduced counting function) of a—points of meromor-
phic functions ¢. A meromorphic function « is said to be a small function of ¢ if T'(r,a) = o(T'(r, ¢)).
Let S(¢) be the set of all small functions of ¢. For a set S C C, we define

Es(8) = |J{zl(2) — a(z) = 0},

acs

where each zero is counted according to its multiplicity and Ey(S) = U,cg{z]6(2) — a(z) = 0}, where

each zero is counted only once.

If E4(S) = Ey(S), we say that ¢,§ share the set S CM and if E(S) = E5(S), we say that ¢, § share
the set S IM.

In 2001, Lahiri [10] introduced a remarkable notion called weighted sharing of values and sets which

renders a useful tool in the literature. We explain the notion in the following.
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Definition 1.1. (5, p.196, [10]) Let k be a non-negative integer or infinity. For a € CU {oo} we denote
by Ex(a, @) the set of all a—points of ¢, where an a point of multiplicity m is counted m times if m < k
and k+ 1 times if m > k. If E(a, ¢) = Ex(a,8), we say that ¢,§ share the value a with weight k.

We write ¢, § share (a,k) to mean that ¢, § share the value a with weight k. Clearly if ¢,§ share
(a, k) then ¢, § share (a,p) for any integer p,0 < p < k. Also we note that ¢, § share a value a IM or CM

if and only if ¢, § share (a,0) or (a,c0) respectively.

Definition 1.2. (6, p.196, [10]) Let S be a set of distinct elements of CU {oo} and k be a non-negative
integer or co. We denote by Ey(S, k) the set U,cg Er(a,d).

Clearly E,(S) = E(S,00) and Ey(S) = Ey(S,0).

In 1977 [6], Gross posed the following question.

Question 1.1. Can one find two finite sets S;, j = 1,2 such that any two non constant entire functions ¢

and § satisfying Fy(S;) = Eg(S;) for j = 1,2 must be identical?

In 2003 [19], Yi and Lin asked the following question corresponding to meromorphic functions.

Question 1.2. Can one find two finite sets S;,j7 = 1,2 such that any two non constant meromorphic

functions ¢ and § satisfying Ey(S;) = E(S;) for j = 1,2 must be identical?

In connection to the Question 1.2, Li and Yang in [26] obtained the following result.
Theorem A Let m > 2 and n > 2m + 6 with n and n — m having no common factors. Let a and
b be two non-zero constants such that the equation w™ + aw™ ™ + b = 0 has no multiple roots. Let
S = {w|w" + aw™ ™ + b = 0}. Then for any two non constant meromorphic functions ¢ and §, the

conditions Ey (S, 00) = Eg(S, 00) and Ey({oo}, 00) = Eg({oo}, 00) imply ¢ = §.

Let us explain some standard definitions and notations of the value distribution theory available in

[8] which will be used in the paper.

Definition 1.3. (2, p.85, [9]) For a € CU {oo}, we denote by N(r,a;¢p|= 1) the counting function of
simple a— point of ¢. For a positive integer m, we denote by N (r,a; ¢p|< m)(N(r,a; ¢p|> m)) the counting
function of those a—point of ¢ whose multiplicities are not greater (less) than m, where each a— point is

counted according to its multiplicity.

N(r,a;¢|< m)(N(r,a; ¢|> m)) are defined similarly except that in counting the a—points of ¢ we
ignore the multiplicity. Also N(r,a;d|< m)(N(r,a;¢|> m)), N(r,a;¢|< m) and N(r,a;p|> m) are

defined similarly.

Definition 1.4. (1, p.1/2, [11]) For a € CU{cc}, we denote by No(r,a; ¢) = N(r,a;¢) + N(r,a; 4|> 2).
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Definition 1.5. (3, p.142, [11]) Let ¢ and § share a value a IM. We denote by N.(r,a; ¢,§) the counting
function of those a—points of ¢ whose multiplicities differ from the multiplicities of the corresponding

a—points of §.

Suppose p be a non-zero complex constant. We define the shift of ¢(z) by ¢(z + p) and define the

difference operators by

Dpd(2) = 6(z +p) — 9(2),

AlG(2) = AT (LDpd(2)),n € Nyn > 2.

In 2010, Zhang [21] considered a meromorphic function ¢(z) sharing sets with its shift ¢(z + p) and
obtained the following result.

Theorem B Let m > 2 and n > 2m + 4 with n and n — m having no common factors. Let S =
{wlw™ 4+ aw™ ™™ +b = 0}, a and b be two non-zero constants such that the equation w” + aw™ ™ +b=10

has no multiple roots. Suppose that ¢(z) is a non-constant meromorphic function of finite order. Then

Ey(z)(8,00) = Eg(z1p) (S, 00) and Ey(.) ({00}, 00) = Eg(zqp) ({00}, 00) imply ¢(z) = ¢(z +p).

For an analogue result in difference operator, Chen and Chen [5] proved the following result.
Theorem C Let m > 2 and n > 2m + 4 with n and n — m having no common factors. Let a and
b be two non-zero constants such that the equation w™ + aw™ ™ + b = 0 has no multiple roots. Let
S = {wlw" + aw™™ ™ + b = 0}. Suppose that ¢(z) is a non-constant meromorphic function of finite order

satisfying Ey . (S, 00) = Eg(a,4)(S,00) and Ey(.)({oc},00) = Eg(a,¢) ({00}, 00). If
N(r,0;8p9) = T(r, ¢) + S(r, ¢),
then
?(2) = p(Lp9)-
In 2014, Li and Chen [25] considered a linear difference polynomial of ¢ in the following manner
L(z,¢) = bed(z + cx) + ... +bo(2)p(z + co), (1.1)

where by (# 0), ..., bo(2z) are small functions of ¢, ¢y, 1, ..., ¢, are complex constants and k is a non-negative

integer satisfying one of the following conditions:

bo(2) + ... + bi(2) = 1, (1.2)

bo(2) + ... +br(2) =0 (1.3)

obtained the following theorem.
Theorem D Let m > 2 and n > 2m + 4 with n and n — m having no common factors. Let a and

b be two non-zero constants such that the equation w™ + aw™ ™ + b = 0 has no multiple roots. Let
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S = {wlw" + aw™ ™ + b = 0}. Suppose that ¢(z) is a non-constant meromorphic function of finite order
and L(z, ¢) is of the form (1.1) satisfying the conditions (1.2) and (1.3). If Ey.)(S,00) = Ep 2,4 (S, 00),
Eyz) ({00}, 00) = EL(z,4) ({00}, 00) and N(r,0; L(z, ¢)) = T(r, ) + S(r, ¢), then

#(2) = L(z,¢).

Remark 1.1. From the above discussions, it is to be observed that in Theorem B, Theorem C and
Theorem D, the minimum cardinality of the main range set S is 9 under the environment of CM sharing

hypothesis.

In 2022, G. Haldar [22] proved the following result.
Theorem E Let S = {z|P(z) = 0}, where P(z) polynomial and n(> 2m + 3), m(> 1) be two positive

integers such that ged(n,m) = 1,a,b,¢,d are non zero complex numbers, & = "((r::f:;) # 1 and

a # v; for j = 1,2,..,m. Let ¢ be a transcendental meromorphic function of finite order. Suppose

Ey(2)(8,3) = Ep(2,0)(S,3), Ey(z)({00},0) = EL(z,¢)({00},0), where L(z, ¢) is defined in (1.1). Then
¢(z) = L(z,¢).

Definition 1.6. (1.3, p.122, [1]) The q-th order difference operator Alp(z) is defined by Ad¢p(z) =
A%’l(ﬂnqﬁ(z)), where g(> 2) € N and n € C\ {0}, while the difference polynomial of difference operator

is given by L(An¢) =31, aiAﬁ]¢, where a;(i = 1,2,...,q) are nonzero constants.

We can also deduce that,

ALy =" (Do(z+ (g — i)n). (1.4)

i=1
Definition 1.7. (1.3, p.381, [2]) Let S be a set of distinct elements of CU {oo} and k be a non-
negative integer or co. We denote by Ef(S,k) the set UsesEr(a; f). Clearly Ef(S) = E¢(S,00) and
E4(S) = E¢(S,0).

If E¢(S,k) = E4(S, k), then we say that f, g share the set S with weight k and write it as f, g share
(S, k).

By N(r,a; f|< m) we mean the counting function of those a—points of f whose multiplicities are less
than m where each a—point is counted according to its multiplicity and by N(r,a; f|> m) we mean the
counting function of those a—points of f whose multiplicities are not less than m where each a—points
is counted ignoring multiplicity. We also denote by Na(r,a; f) the sum N(r,a; f) + N(r,a; f|> 2).
Usually, S(r, f) denotes any quantity satisfying S(r, f) = o(T'(r, f)) for all r outside of a possible excep-
tional set of finite linear measure. Also Si(r, f) denotes any quantity satisfying Sy (r, f) = o(T'(r, f)) for

all r on a set of logarithmic density 1, where the logarithmic density of a set F' is defined by

. 1 / dt
lim sup — —.
r—so0 logr Jiu ;ar T



Uniqueness of meromorphic function and its difference polynomial of difference operator

Let the positive integer [,.S, S* and Sy represents respectively the sets {1,w,...,w!™ '}, {a1, ag, ...,a;} and

27

{0}, where w = coszT7r +isin<" and a;,i = 1,2,...,] are non zero constants.

Let a;—1(# 0),a¢—2, ...,ap and C(# 0) be complex numbers. We define
P(z) = C2Q(2) = Cz(az_12" Y +as_22' "2 + ...+ a1z + ap). (1.5)
For the polynomial P(z) as given in (1.5), let us define two functions:

o | i a0

0, if ag=0.

1, Zf ag :0,(11 #0
0, otherwise.

In view of (1.5), corresponding to the set S*, let us consider the polynomial P, (z) as follows:

P, (z) = CzQ.(2). (1.6)

1 -1 —_r—
where € =y o and Qu(2) = B p(-1) Banaz. a7,

Yajag...q. = sum of the products of the value a1, as, ..., ; taking r into account. We also denote
by my and mg as the number of simple and multiple zeros of Q. (z) respectively.

Therefore, naturally one may ask the following question.

Question 1.3. Is it possible to get the uniqueness of the meromorphic function ¢ with its difference

polynomial of difference operator £(A;¢) under sharing of the range sets can further be relaxed?

To seek the possible answer of the above question is the motivation of the paper. We now recall
following polynomial introduced by A. Banerjee and G. Haldar [3] renders an useful resource. Let for

deC,

2n n 2
_.n_ n—m n=2m _ g 1.7
Q) == n—mz +n—2mz (1.7)

Then

m—1

Q’(Z) _ 7Lz”72"“](zm _ 1)2 _ nzn,72m71 H (Z _ Mj)zv
Jj=0
where p1; = 0052]77T + isinzjw",j =0,1,...m—1.

Therefore,
Q0) = —d

and

2n n
n n—m n—2m
Quj) = pu7 — ; + ,- —d
(s) = 15 nfmuf n72muj

37
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2n n
=pil1- —d
,u]< 7z7m+nf2m>

__
(n—m)(n —2m)
= —d,

om? "
where \; = -
(n—

m,j =0,1,2,...,m — 1. Therefore, if d # 0,);,7 = 0,1,...,m — 1 all the zeros of

the polynomial Q(z) given by (1.7) are simple.
Now it is clear that Q(2) — Q(k;) = (2 — p;)>®,_3(2), where ®,,_3(2) is poynomial of degree n — 3,j =

0,1,...,m — 1. Hence,

Q(9) = Q) = (& — 1)’ ®r—3(9).

ie.,
dF —d— (A —d) = (¢ — 115)*Pp3(0),
where
D(2)" 2 (B(2)*™ — 2 h ()™ + )
F=
d
ie.,
Co1
Pt = 26— 1) ®ua(0). (18)
_ 1
F =t = 2(0 = 1) ®ns(0), (1.9)
where
0 = %,j:o,l,...,m—l. (1.10)

Throughout the paper we shall denote by @ = 3m + 2,b = 4 4+ 2m + %J) =2m+ % +
(n—2m—q+2)(4m+1)

(n—2m—q+2)(4m+1) 4m+1
(n—2m—q—1)(nk+n+q—1)" +

—2m—q—1)(nk+n+q—1) n—q—1"

r=2m+ (n
Let us define T',, as follows:

1, if n>11
r, =

0, otherwise.

The following theorem is the main result of the paper.

Theorem 1.1. Let S = {z|Q(z) = 0}, where Q(z) is a polynomial given by (1.7) and n(> 1), m(> 1), q¢(>
1), k,t with ged(n,m) = 1 be five positive integers. Let ¢(z) transcendental meromorphic function of
finite order and 1 be a nonzero complex constant. Suppose ¢(z), L(Dy¢) share (0,0), (00, k), Ey(z)(S,t) =

3 _ 2 _ n—2m—q+2
n—2m—q—1 n—gq—1 (n—2m—q—1)(nk+n+q—1)"

Ern,9)(S:1), where 1 < k < oot > % —
If one of the following conditions hold:
(i) m=1,n>5+q, where g =1 andd;éo,m,m or
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(i) m > 2,q > 1,n > maz{3m,p} and d € C {0, po, 11, .-, bm—1} then
#(2) = L(Dyo).

Putting m =1, =4,¢ =1 and k£ = 5 in the above theorem we obtain the following corollary.

1 ) .
%d, where d is a nonzero complex

Corollary 1.1. Let n(> 5) be a positive integer and dy =

Let S = {z: %z” —n(n =2t 4 22 g 0}.

constant such that dy # 0,1, 5

1
5-
Let ¢(z) be a transcendental meromorphic function of finite order and n be a nonzero complex constant.

Suppose ¢(2), ¢(z + ¢) share (0,0), (00,5) and Eg(.)(S,4) = Er(n,4)(S:4). Then

#(z) = L(Ayg).
Remark 1.2. The following example shows that in the main result, the polynomial Q(z) can not be
chosen arbitrarily.
Example 1.1. Suppose ¢(z) = 1fr—1§(z) = H%
Also ¢ and § share the set S as well as S, CM. But ¢ # §.

Then ¢ and g are finite order sharing (0, 00), (00, c0).

However, we were not able to find the case when §(z) = L(A,¢),n is a non-zero complex constant.
Next we consider the case when ¢ is of infinite order. It is interesting to investigate whether in Theorem

and d; = L such counter example exists at all.

. . ; _ 1
1.1 and Corollary 1.1, respectively for the case d = -5 3

12

The following example shows that such situation is feasible.

Example 1.2. Let ¢(2) = r7=. Then £(A,9) = -4

(2), L(Ay¢) share (0,00), (00, 00) and sets S and S, CM, but ¢(z) #Z L(A,¢).

, where 7 is chosen such that e” = —1. Clearly

However, unfortunately when d # ﬁ or dy # %, we were again unsuccessful to find out the counter

example in this case.

2. Lemmas

In this section, we present some lemmas which will be neede in the sequel. let ¢ and § be two
non-constant meromorphic functions defined in C. Let us also define two functions, F' and G, in C by

)" P(B(2)P = ()™ + )
N d

F (2.1)

[L(Dn@)]" 2 ([L(D )™ — 2 [L(Dg)]™ + 725)
y (2.2)

G =

We also denote by Q, W, Qy, W; and W, the following functions

B ¢_//_ 2¢/ B §_//_ 2§/
Q‘(aﬁ’ ¢—1> <§' §—1>’
A
6D iG-1)

W =

39
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F/I 2F/ GII 2GI
= (F*ﬁ)* (E’ﬁ)’
F’ G’

Wl:F(an*G(Gfl)

and

F’ (€4
YSFon @

Lemma 2.1. (2.1, p.127, [4]) Let F, G be two non-constant meromorphic functions such that they share
(1,1) and Q #0. Then

N(r,1;F|=1) = N(r,1;G|=1) < N(r,Q) + S(r, F) + S(r, Q).

Lemma 2.2. (2.5, p.385, [2]) Let F,G be two non-constant meromorphic functions such that they share

(1,t) where 1 <t < oco. Then

N(r,1;F)+ N(r,1;G) = N(r,; F|l=1) + (t — %)N*(r,l;F,G) < -[N(r,1;F)+ N(r,1;G)].

N =

Lemma 2.3. Suppose ¢,§ share (1,0), (00, 0), (0,0) and <b;, defined as in (1.10), are non-zero complex
numbers. If Q # 0, then

m—1 m—1
N Q) < Nu(r,0;6,8) + > N(rji0>2) + > N(r,05;§/> 2)
j=0 j=0

+N.(r,1;6,8) + Nu(r,00;0,8) + N(r,0;¢') + N(r,0;§') + S(r, ¢) + S(r, §),

where N(r,0; q;') is reduced counting function of those zeros of ¢ which are not the zeros of ¢(¢p —

1) H;”:_Ol (¢ —b;) and N(r,0;8') is similarly defined.

Proof. By the definition of Q we verify that the possible poles of £ occur from the following six cases:
(i) The common zeros of ¢ and § of different multiplicities. (ii) the multiple 1/~1j—p0ints of ¢ and § for each
j=0,1,2,...,m —1. (iii) Those common poles of ¢ and §, where each such pole of ¢ and § has different
multiplicities related to ¢ and §. (iv) those common 1-points of ¢ and §, where each point has different
multiplicities related to ¢ and §. (v) The zeros of ¢’ which are not zeros of ¢(¢ — 1) H;n;[)l (¢ — ;). (vi)
The zeros of § which are not zeros of §(§ — 1) H;":_Ul@ — 1/;]) Since all poles of Q are simple, the lemma

follows. O

Lemma 2.4. (Clunie [2, p.68, [23]]) Let ¢ be a non-constant meromorphic function and Q(¢) = ap +

a1¢ + azd?® + ... + a,@", where ag, a1, as, ..., a, are constants and ag # 0. Then
T'(r,Q(¢) = nT'(r,¢)) + O(1).

Lemma 2.5. (5.2, p.26, [1]) Let ¢ be a non-constant meromorphic function of finite order and ¢ € C—{0}
be fized. Then

T(T, K(Aﬂ¢)) = qT(Tv ¢(2)) + S(T‘v (;5(2))
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Lemma 2.6. Let ¢ be a non-constant meromorphic function of finite order and ¢ € C — {0} be fized.

Then
S(r, L(Ly)) = S(r, 6(2)).
Proof. Using Lemma 2.4, it can be easily scen that
S(r, L(An8) = o(T(r, L(Ly9))) = o(T(r,6(2))) = S(r,6(2))-
m

Lemma 2.7. Let F and G be given by (2.1) and (2.2), n(> 1) an integer and ¥ # 0. If F and G share
(1,m), ¢(2) and L(Ay¢) share (0,u), (00, k), where 0 < k < oo, then

{(n—2m)(u+1) —1}N(r,0;$|> u + 1)

={(n—2m)(u+1) = }N(r,0; L(Ly¢)[> u+1)

< No(r, 1, F,G) + N(r,00; F, G) + 8(r, ¢) + S(r, L(L9)).
Proof. Suppose 0 is an exceptional value of Picard(e.v.p) of ¢(z) and L(A,¢). Then the lemma follows
immediately. Next suppose 0 in not an e.v.p of ¢(z) and L(A,¢). Let zy be a zero of ¢ with multiplicity

p and a zero of ¢(z) and L(A,¢) with multiplicity r. Then from (2.1) and (2.2), we know that z, is a

zero of F' and G have no zero multiplicity ¢, where (n — 2m)u <t < (n — 2m)(u + 1).
So, from definition of W, it is clear that zo of ¥ with multiplicity at least (n — 2m)(u + 1) — 1. So,
we have,
{(n - 2m)(u+ 1) — 1N, 0, 6()] w + 1)
={(n—2m)(u+1) = 1}N(r,0;L(Ly¢)[> u +1)
< N, 0050(2), L(Ay9)) + N, 1; F,G) + S(r, ) + S(r, L(Ly9)).

O

Lemma 2.8. Let F' and G be given by (2.1) and (2.2), where n(> 8) is an integer and 1 # 0. Suppose
@1, P2, ..., pam are the roots of the equation z>™ — %ZW + 7%m = 0. Suppose also that F,G share

(1,1) and (), L(Dye) share (00, k), (0,0), where 2 < t < co. Then, for the complex numbers ; given
by (1.10), we have

et §) (0 002) + T £(800))

SN(r,0:6(2)) + N(r, 0, L(An9)) + Nu(r, 0:6(2), L(Ay9)) + N(r, 00; 6)

2m 2m
) N (1, 6550(2)) + D Na(r, 655 L(Dy0)) + N(r, 00; L(Ad))
j=1 j=1

m—1 m—1
+ Z Na(r, b1 8(2)) + Z No(r, 5 L(Dy)) + N (r,00;0(2), L(Ly9))
j=1 j=1
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3\
= (1= 3) + (L R.G) 4 5000 + 51 £(5,0).
Proof. By the Second fundamental theorem of Nevanlinna, we have

(m+1){T(rF)+T(r,G)}
m—1
< N(r,0; F)+ N(r,1; F) + N(r,00; F) + Z N(r,ap;; F)
j=1
m—1
+N(r,0;G) + N(r,1;G) + N(r,00;G) + Y N(r,¢h;;G) = N(r,0; F') = N(r,0; G')

Jj=1

+S(r, F)+S(r,G).
Now using Lemma 2.1, Lemma 2.2, Lemma 2.3, Lemma 2.4 and Lemma 2.5, we have
et §) (0 602) + 70 £(8,0))

SN(r,0:6(2)) + N(r, 0; L(Ag9)) + N (r, 0:6(2), L(Ay f)) + N(r, 005 6)

2m 2m
+ D No(r,ds3 8(2)) + Y Na(r, bj; L(2y9)) + N(r,00; L(Ly )
j=1 j=1

m—1

m—1
+ ) Na(r 3 0(2) + D Na(r, 15 L(L8y9)) + Naulr, 00 6(2), L(And))
j=1 j=1
(1= 3) + WL R.G) 4 5000 + 51 £(5,0).
O

Lemma 2.9. Let F and G be given by (2.1) and (2.2), where n(> 8) is an integer and Wy # 0. Suppose
also F,G share (1,t) and ¢(z), L(Ay¢) share (00,k),(0,0), where t,k and u are non-negative integers.
Then the poles of F and G are zeros of W1 and

(nk+n+q—1)N(r,oc0;¢(2)|> k+1)

= (nk+n+q—1)N(r,oc0; L(Ng0)|> k+1)
2m 2m

SN, 0;6(2), L(Dg#) + Y Na(r, ¢5; 6(2) + Y Na(r, 65i L(Dy0))
j=1

Jj=1

+ Nu(r, L F,G) + S(r, ¢(2)) + S(r; L(Ag¢)),
where ¢;,7 = 1,2, ...,2m has the same meaning as in Lemma 2.8.

Proof. Since ¢(z), L(A,¢) share (0o, k), it follows that F, G share (0o, nk) so a pole of ¢ with multiplicity
u(>nk+q+1) is a pole of G with multiplicity (> nk + ¢ + 1) and vice versa. We note that F' and G
have no pole multiplicity u where nk < u < nk 4+ n. Now using the Milloux Theorem [[?],p. 55], we get

from the definition of W7,

m(rv Wl) = S(’f‘, (;5(2)) + S(T, K(An¢)
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Hence

(nk +n+q—1)N(r,o00¢(z)|> k +1)

= (nk+n+q—1)N(r,00; L(LAy¢)|> k + 1)
< N(r,0; W)

< T(r,W1) + O(1)

< N(r,00;W1) + m(r, W1) + O(1)

SN0, F) + N(r,0;G) + Nu(r, L, F,G) + S(r, F) + S(r,G)

2m

2m
SN 0:6(), L(L0®) + > Nalr,d5:0(2) + 3 Na(r, 3y £(L99))
j=1 j=1

T N(r LE,G)+ S(r,¢(2) + S(r; L(Ag9)),

where ¢;,j = 1,2,...,2m has the same meaning as in Lemma 2.8. O

Lemma 2.10. Let F' and G be given by (2.1) and (2.2). Then FG # 1 forn > 5+q.

Proof. Suppose on the contrary FG = 1. Then by Mokhon’ko’s Lemma
T(r,¢(2)) = T(r, L(Ly9)) + O(1).

Also

2m 2m
(@) [T(6(2) = g (L)) > [[(£(Dye) — 65) = &,
j=1 j=1
where (;Sj,j =1,2,...,2m has the same meaning as in Lemma 2.8.
Let 29 be a ({Sj—point of ¢(z) of order u. Then zy is a pole of L(A,¢ of order p such that v = np > n.

Therefore,
. 1 -
N, d5:0(2)) < - N(r,d5:0().
Again let zy be a zero of ¢(z) of order t. Then 2 is a pole of L(A,¢) of order © such that
(n—2m)t = n®.

This implies ¢t > © and 2m© = (n — 2m)(t — ©) > (n — 2m). Therefore, (n — 2m)t = nO gives t > 5.
So

N(r,0:6()) < 2N (r, 0 6(2)).

Again

2m

N(r.00:6(2)) < N(r.0;L(800) + 3 N(r. 653 L(25,9))

Jj=1
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2 12 -
< SN0 L(Ly6) + DN (653 L(246)
Jj=1
< TEAT (G, £(09).

Therefore, by the Second Fundamental Theorem of Nevanlinna, we get

2m
2mT(r, ¢(2)) < N(r,00;(2)) + N(r,0;6(2)) + Y N(r, 6556(2)) + S(r,6(2))
j=1

< P07, ) + 50, 0),

which is a contradiction for n > 5+ q.

Lemma 2.11. Let m(> 1) and n(> 2m) be two positive integers. then the polynomial
9(h) = (n —m)*(h" — 1)(h" 2™ — 1) — n(n — 2m)(h"~™ — 1)2

of degree 2n — 2m has m roots of multiplicity 4 and all other zeros are simple.

Proof. Let F(t) = $9(e')e="=™" for t € C.

An elementary calculation gives
F(t) = m®cosh(n — m)t — (n — m)*coshmt 4+ n(n — 2m).

Assume that 9(p) = 9'(u) = 0 for some p € C.
Then F(t) = F'(t) = 0 for every t € C satisfying ' = . From F(t) = 0, we get

mZcosh(n — m)t = (n — m)2coshmt — n(n — 2m)
From F'(t) = 0, we get
m2sinh(n —m)t = m(n — m)sinhmt.
Therefore, from (2.3) and (2.4) we have
m* = {(n — m)%coshmt — n(n — 2m)}* — {m(n — m)sinhmt}*
(n —m)*cosh®mt + {n(n — 2m)}? — 2n(n — 2m)(n — m)coshmt
— {m(n — m)P(coshmt — 1)

= {(n —m)* —m3(n —m)*}cosh®>mt + {n(n — 2m)}? + m*(n — m)?

—2n(n — 2m)(n — m)*coshmt
or,

(n —m)?n(n — 2m)cosh®mt + {n(n — 2m)}? + m?(n — m)?

—2n(n — 2m)(n — m)*coshmt — m* + {n(n — 2m)}* =0

(2.3)

(2.4)
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or,

(n —m)?n(n — 2m)(coshmt — 1)* — (n — m)*n(n — 2m) + m*(n — m)?

—m* + {n(n-2m)}>=0
or,

(n —m)2n(n — 2m)(coshmt — 1)% — n(n — 2m){(n — m)? — n(n — 2m)}

+m2n(n—2m) =0
or,

(n —m)2n(n — 2m)(coshmt — 1)% = 0
or,
(coshmt —1)2 =0
or,
<e”"‘" +26’"” B 1>2 _o

or,

(™ =1 =0,

which shows that the roots of the equation ™ = 1 are of multiplicity 4.

Therefore, ¥(h) has m zeros of multiplicity 4 and all other zeros are simple. O

Lemma 2.12. (3, p.130, [20]) Let ¢,§ share (00,0) and W = 0. Then ¢ =§.

3. Main Result

Proof of Theorem 1.1. Let I and G be two functions defined in (2.1) and (2.2).
Since Eg(.)(S,t) = Eg(a,$)(S:t) and Egy ({00}, k) = Er(a,¢) ({00}, k), it follows that F,G share (1,t)
and (oo, nk).
Since

Ffwj = (¢7ﬂj)3q>n73(¢)-,

IS

where ®,,_3(¢) is a polynomial in ¢ of degree n — 3, for j =0,1,2,...,m — 1, we have
Ny(r,5; F) < 2N (r, 155 0) + N(r,0; @, _5(0)) < 2N(r, 1y 6) + (n — 3)T(r, ¢) + S(r,9). (3.1
Similarly,

No(r, 153 F) < 2N(r, 15 L(A809)) + (n = 3)T(r, L(Ly9)) + S(r, L(D9). (3.2)
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for j=0,1,2,....,m — 1.

Case 1: Suppose H; # 0. Then F' # G. So, it follows from Lemma 2.12 that W; # 0.
Hence using (3.1), (3.2) and Lemmas 2.1, 2.2, 2.3, 2.7, 2.8 and Lemma 2.9, we have

n<m + g) {T(r.6(2)) + T, £(2))}
< 3N(r,0:9) + 2N(r, 001 8) + {2m + ¢ +m(n — DHT(r, 6(2)) + T(r, L(2,9))}
#1000, £ = (1 3 ) V-0 1) 4 800:0) 4 805 £00)
<@ _ m) (T(r,6(2)) + T(r, L(Ly8))}
, B _
S e g (N (0010020, £(200)) + N, 1 F, )
b (N0 0(2), £(80)) + N1, 1 FLG) 2T (1, 6(2)) + 2 £(20)

#1001 0(2) £(20) — (12 3 )Nl TLELG) 4 5(0) + S0 £(29)

3 _
< (1 + m){m(nw; d(2), L(Ly))

+ <2m + %) %{H{T(r,(b(z)) +T(r, £(L))) — (t _3 >N*(r, LF.G)

+5(r9) + 5(r, L(Ly9))
< n—2m-—q+2
“(m—2m—-q—-1)(nk+n+qg—1)

{N.(r,0;8(2), L(Dy9)) + 2m(T (7, 6(2))

T £8000) + N (1 1 E. G+ (0, 0(:) + T £(20))
_ (t 32 —-: _i_ 1>N*(r7 1,F,G) + 5(r, 6) + S(r, L(L )

< n—2m-—q+2
“(n—2m—qg—-1)(nk+n+q—1)

{N.(r,0;0(2), L(Ay9))

dm+1
n—q—1

+2m(T(r, ¢(2)) + T(r, L(2y0)))} + {T(r,0(2)) + T(r, L(Ln9))}

3 3 2 n—2m-—q+2 —
(-3 _ _ _ N.(r,1;F.G
( 2 n—-2m—q—1 n—q-—1 (7172m7q71)(nk+n+q71)> (r )

+S(r,0) + S(r, L(A,9)).

Therefore, from the condition over ¢ and k in the theorem, we get from above

2 amil s amean At Ao
+T(r, L(Ay))} < S(r,0) + S(r, L(A9)),

{q(n—l) 4m+1 (n—2m—q+2)(4m+1)
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which is a contradiction.

Case 2: Suppose ; = 0. then by integration we have

-5
where A, B,C, D are complex constants satisfying AD — BC # 0.

Therefore, from (3.3), F,G share (1,00). Since F,G share (co,nk), it follows that F,G share (oo, 00).
Also from Lemma 2.7, we obtain N (r,0;¢(z2)) = N(r,0; L(L,¢)) = S(r,¢) + S(r, L(Ly9)).

Subcase 2.1: Suppose AC # 0. Then F' — % = % # 0. So F omits the value g.

Therefore, by the Second Fundamental Theorem, we have

nT(r,¢) < N(r,0; F) + N(r,00; F) +N(r,g;F)+S(r,F)

< (@2m4+1)T(r,¢) + S(r, ¢).

(n—=2m —1T(r,¢) < 5(r, 9),

which is a contradiction.
Subcase 2.2: Suppose AC' = 0. Since AD — BC' # 0, both A and C cannot be simultaneously zero.
Subcase 2.2.1: Suppose A # 0 and C' = 0. Then (3.3) becomes

F =G+, (3.4)

where ¢ = % and ¢ = %.

If F has no 1-point, then by the Second Fundamental Theorem of Nevanlinna, we have
T(r,F) < N(r,0;F) + N(r,1; F) + N(r,00; F) + S(r, F)
or,
(n=2m—1)T(r,¢) < S(r, ),

which is not possible.

Let F has some 1-points. Then ¢ + 1) = 1. Therefore from (3.4), we have F' = q;G +1-— (%

Subcase 2.2.1.1: Suppose ¥ # 1. We consider the following subcases.

Subcase 2.2.1.1.1: Suppose m = 1. So ug = 1. Noting that n > 5 + ¢ where ¢ = 1, from (1.10), we

have ¢y = % = (nif)’(‘f:iz)d = (n—l)?’n—2)d and therefore, in view of (1.2) we must have

-1
F =1y = 5(0(2) = 1)®0_5(6(2)),
where ®,,_3(¢(z)) is a polynomial in ¢(z) of degree n — 3. Therefore, we have

N(r,4o; F) < N(r,1;6(2)) + (n = 3)T(r, ¢(2)) + S(r, ¢(2)).
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In a similar manner, we write G — i = L(p(2) — 1)3@5_5(L(Dy9)), % _5(L(Ay¢)) is a polynomial in
L(Ay¢) of degree n — 3 and

N(r,gho; F) < N(r, 1, £(808)) + (n = 3)T(r, L(Dy9)) + S(r, L(Dy)).
If1— ¢~> #* 1/;0, then by the Second Fundamental Theorem, Lemma 2.5 and Lemma 2.6, we have

2T(r, F) < N(r,0; F) + N(r,1 — ¢; F) + N(r,90; F) + N(r,00; F) + S(r, F)
<N(r,050(2)) + 2T (r, (2)) + N(7,0; L(Dy0)) + (2 + Q) T(r, LAy 9))
+N(r,1;6(2)) + (n = 3)T(r, ¢(2)) + N(r, 005 ¢(2)) + S(r, ¢)

(n+q+3)T(r,¢) + S(r, ).

(n—q=3)T(r,¢) <S(r,¢),
which is not possible.

If 1 — ¢ = 1)y, then we have from (3.4) that F = (1 — 1/;0)6' + 1)y Since d # m, by the Second
Fundamental Theorem, Lemma 2.5 and Lemma 2.6, we have

2T(r,G) < N(r,0; G) + N(r, Yo
o —

N(r,90; G) + N(r,00;G) + S(r,G)
SN, 0, L(Dy8)) + (24 Q)T (r, L(Ay¢)) + N(r,0; ¢) + 2T(r, )

+ N(r, 1 L(A¢)) + (n— 3)T(r, L(Ly¢)) + N(r,00; L(Lye)) + S(r,¢) + S(r, L(D,0)).

(n —q— 3)T(T‘, ¢) < S(T‘v (25)7
which is not possible.

Subcase 2.2.1.1.2: Next suppose m > 2,q > 1. Then by the Second Fundamental Theorem, Lemma

2.5 and Lemma 2.6, we have

(m+1)T(r,F)

< N(r,0; F) + N(r,00; F) + N(r, 1 — ¢; F) + Z (r,2bj; F) + S(r, F)

< N(r,0; F) + N(r,00; F) + N(r,0; G) + Z 5 F) + S(r, F)
J=0

<N(1,0;0) + 2mT(r, ¢) + T(r, ¢) + N(r,0; L(Ly9)) + (2m + )T (r, L(Lyo)) +m(n — 2)T(r, ¢) + S(r, ¢).

(n—=2m—q—1)T(r,¢) < S(r,¢),
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which is not possible.

Subcase 2.2.1.2: Suppose ¢ = 1. Then F = G.

ie.,
n—2m 2m 2n m n
o= (aom = 2gem )
2
= Lo, (1o - 2 fea,om + )
ie.,
2
LE(AGO" = T LDy 8)]" " + o [L(Dy )"
— n 2n n—m n—2m
= 6()" — (a4 (e,
Suppose that h(z) = %. Then we have from above,
n 2m 2n n—m m n n—2m —
(h"=1)f 7m(h -1f +n72m(h —1)=0.
ie.,

W(hn —1)g? — n(n — 2m)(h""™ — 1)g; + M(hﬁﬁm —1)=0, (3.5)
where g; = ¢™.
Suppose h(z) is not constant. Then from (3.5) we have,
{(n —m)(n —2m)(h" — 1)g1 — n(n — 2m)(K"~™ — 1)}*> = —n(n — 2m)¥(h), (3.6)

where ¥(h) = (n —m)2(h" — 1)(h"~2™ — 1) — n(n — 2m)(h"~™ — 1)? is a polynomial of degree 2n — 2m.

Therefore, in view of Lemma 2.11, (3.6) can be written as

{(n=m)(n—2m)(h" = 1)g1 —n(n —2m)(h"~™ — 1)}?

m 2n—6m
=—(n—2m) H(h —p5)* H (h =),

2jm

where 1; = cos% +isin=r, j =0,1,2,...,m — 1 and 71,72, ..., Y2n—6m are the simple zeros of W(h).

It can easily be seen from the above equation that all the zeros of h — 7; have order at least 2. Since
&(2), L(Ay¢) share (0,00) and (00, 00), it follows that h omits the value 0 and oo.
Therefore, applying the Second Fundamental Theorem to h, we have

2n—6m
(2n —6m)T(r,h) < > N(r,7;:h) + N(r,0;h) + N(r,00: h) + S(r, h)
j=1

2n—6m
1 _
3 > N(rjih) ++8(r,h)

Jj=1

IA

IN

(n—3m)T(r,h) + S(r,h).
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(n—3m)T(r,h) < S(r,h),

which is impossible.
So, h is constant. Hence, from (3.5), we have h®* — 1 = 0,h"™™ — 1 = 0 and A" ?™ — 1 = 0. Since
ged(n,m) = 1, we must have h = 1.

ie.,
L(Ang) = ¢(2).

Subcase 2.2.2: Suppose A =0 and C' # 0.
Then (3.1) becomes

-

T oG+1’
where 0 = % and 7 = %.
If ¢ has no 1-point, the case can be treated in the same way as done in Subcase 2.2.1.
So let ¢ has some 1-point. Then o + 7 = 1.
Now, o cannot be equal to 1. For otherwise F'G = 1 which is not possible by Lemma 2.10.
Therefore,

F= e

Since C' # 0,0 # 0, G omits the value —FT".

By the Second Fundamental Theorem, we have

g

T(r,G) < N(r,00:6) + N(1,0:0) + Nr, - +—2:G) + 5(1,G).

(n—=2m—q—1)T(r, L(Dy¢)) < S(r,L(Ly9)),

which is a contradiction. This completes the proof of the theorem.
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