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A STUDY ON VERTEX ADDITION
STRATEGIES FOR PRESERVING GRAPH
EIGENVALUES

SUNG-SOO PYO

ABSTRACT. In this paper, we investigate whether
adding vertices to a graph can preserve all eigenval-
ues of the original graph. We demonstrate that it
is impossible to add n or fewer vertices to a sim-
ple connected graph of order n while maintaining
all eigenvalues. We also examine specific cases in
which preserving n — 1 of the original eigenvalues
when adding vertices is feasible or not. Addition-
ally, we present a method for adding vertices that
preserves each eigenvalue, and we identify a way to
add n+1 vertices while preserving all n eigenvalues.

1. INTRODUCTION

In this paper, given a set X, M™*"(X) denote an m xn
matrix consisting of elements from X. For simplicity, if
m = n, we write this as M"(X). Similarly, X" repre-
sents an n-dimensional vector composed of elements from
X. Unless otherwise stated, ¢, 7, m and n are positive inte-
gers.
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A graph G = (V, E) consists of a set of vertices V =
{vi,v2,...,v,} and a set of edges E C {{v;,v;}|vi,v; €
V'}. Throughout this paper, we consider only undirected
graphs, where an edge {v;,v;} = {vj,v;}. The number of
vertices, denoted by |V, is referred to as the order of the
graph G. The edge set E defines the connections between
pairs of vertices, where the order of the two vertices is not
considered. If there exists an edge between two vertices v;
and v;, we say that v; and v; are adjacent. A graph is called
a simple graph if it contains no loops - edges from a vertex
to itself- and no multiple edges between the same pair of
vertices. A connected graph is a graph where there exists
a path between every pair of vertices. If a graph is both
simple and connected, it is referred to as a simple connected
graph. For a graph G = (V, E), the degree of a vertex
v; € V, denoted deg(v;), is the number of edges incident
to v;. In a simple graph, this is equivalent to the number
of vertices adjacent to v;. We denote the maximum degree
of graph G as A(G) and the minimum degree of graph G
as 0(G). The set of all vertices adjacent to a vertex v € V
is called the neighborhood of v, and it is denoted by N (v).
The adjacency matrix of a simple graph G with n vertices
is an n x n matrix Ag = [a;;], where

1 if (Ui, ’Uj) ek
a;; =
* 0 otherwise.

Clearly, the adjacency matrix Ag is a symmetric ma-
trix with diagonal entries of 0 and belongs to M™({0,1}).
The row of the adjacency matrix corresponding to ver-
tex v will be referred to as the v-row. The eigenvalues of
the adjacency matrix Ag are called the eigenvalues of the
graph G. These eigenvalues provide critical information
about the structural properties of the graph, such as its
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connectivity, stability, and expansion characteristics([4]).
We represent the spectrum of matrix A, which includes all
eigenvalues Ap, ..., A, counting multiplicities, as spec(A4) =
(A1y...,An). The spectrum of A spec(A) is a multiset that
allows duplicate elements.

A lot of studies delves into the rich interplay between
graph theory and linear algebra, with a focus on eigenval-
ues and the structural properties of graphs. Eigenvalues of
the adjacency matrix play a central role in understanding
the underlying geometry and symmetry of graphs. Several
works explore different aspects of these connections. For in-
stance, Bahmani and Kiani investigate the multiplicity of
adjacency eigenvalues in graphs[l], while Bevis et al. ex-
amine the rank of a graph when a vertex is added [3]. In [6],
Guo et al. look at the impact of edge addition on the eigen-
values of connected graphs. Distance-regular and strongly
regular graphs are key structures in graph theory, often ex-
plored for their highly symmetric nature. In this regard,
Belousov, Makhnev, and Nirova analyze distance-regular
extensions of strongly regular graphs with an eigenvalue
of 2 [2], a theme echoed by Kabanov et al. [7] and Zyul-
yarkina and Makhnev [9]. These extensions reveal deeper
insights into the structural characteristics of such graphs.
Brouwer and Haemers provide a comprehensive account of
graph spectra, offering key knowledge that ties these in-
vestigations together [4]. Additionally, the effects of vertex
deletion on the multiplicities of eigenvalues, explored by
Simic et al. present both classic and novel results on this
subject[8]. Moreover, in the realm of applications, Pyo [9]
discusses how regular graphs can be applied in cryptogra-
phy, particularly in the design of public key cryptosystems.

To the best of my knowledge, despite numerous studies,
no research has yet been found on whether eigenvalues are
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preserved when a vertex is added. Therefore, this paper in-
vestigates whether the eigenvalues of the original graph are
preserved or cannot be preserved when a vertex is added.

2. PRELIMINARIES

We will denote by 0 a suitably sized vector consisting of
all zero elements, and by O a suitably sized matrix con-
sisting of all zero elements. A square matrix A is called
reducible if there exist a permutation matrix P such that

T c O
PTAP = ( ¢ E)
where C and E are non vacuous square matrices. A square
matrix A is called irreducible if A is not reducible matrix.
In other words, for any index pair i,j, there exists a se-
quence of indices such that the corresponding matrix en-
tries form a non-zero path from row ¢ to column j.

For a connected graph, the adjacency matrix is always
irreducible because there exists a path between any two
vertices. This can be formalized in the following proposi-
tion.

Proposition 2.1. The adjacency matriz of graph G is ir-
reducible if and only if G is connected.

One might naturally consider whether the adjacency ma-
trix of a connected graph is an invertible matrix, however,
the following matrix (2.1) demonstrates that this is not
always the case.

(2.1)

_ -0 O
—_—_ o O
S O = =
S O~
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The Perron-Frobenius theorem applies to non-negative
matrices, such as the adjacency matrix of a graph. It de-
scribes the properties of the largest eigenvalue and the cor-
responding eigenvector. Let A be a square matrix with
non-negative entries. The Perron-Frobenius theorem can
be summarized as follows:

Theorem 2.2. (Perron-Frobenius [5]) Let A be a non-
negative square matrix. Then the following statements
hold:

(1) A has a real eigenvalue \q., known as the Perron
eigenvalue, such that A4z is the largest eigenvalue
in absolute value.

(2) The Perron eigenvalue A4, is non-negative.

(3) There exists a non-negative eigenvector v corre-
sponding to A4 , called the Perron eigenvector.

(4) If A is irreducible, Ayqq is strictly positive, and the
Perron eigenvector has only positive entries.

This theorem is particularly useful when studying the
spectral properties of the adjacency matrix of a graph, as it
guarantees the existence and uniqueness of a largest eigen-
value under the condition of irreducibility, which holds for
connected graphs.

A complex entries square matrix H is called Hermitian
if it is equal to its conjugate transpose, i.e., H = H*, where
H* denotes the conjugate transpose of H. Hermitian ma-
trices have several important properties, including the fact
that all their eigenvalues are real.

An important result concerning Hermitian matrices is
that the eigenvalues of a principal submatrix - a matrix ob-
tained by deleting one or more rows and the corresponding
columns- are interlaced with the eigenvalues of the original
matrix. This is formalized in the following theorem:
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Theorem 2.3. (Interlacing Eigenvalue Theorem [5]) Let
A be a Hermitian matrix of size n X n, and let B be a
principal submatrix of A of size (n—1) x (n—1). Let \; <
Ao < -+ < A\, be the eigenvalues of A, and let 1 < pg <
-+ < unp—1 be the eigenvalues of B. Then, the eigenvalues
of B interlace with those of A, meaning:

M <A<y <<y <Ay

This result is useful when analyzing how modifications
to a graph, such as adding or removing vertices, affect the
eigenvalues of its adjacency matrix.

The following theorem is useful for understanding eigen-
value variations when adding a vertex to a graph or adding
a row and column to a Hermitian matrix.

Theorem 2.4. (Cauchy [5]) Let B be an n xn Hermition,
and y be an n dimensional vector and r be a real number,

andletA:(B; y).Then
y* rn

M (A) € A(B) < Aa(A) < -+ < A(A) < An(B) < Anpa(A)

in which \;(A) = X\;(B) if and only if there is an m -
dimensional nonzero vector v such that Bv = \;(B)v and
y*v = 0; equality in the upper bound occurs for some i
if and only if there is an m-dimensional nonzero vector v
such that Bv = A\iy1(A)v and y*v = 0. If no eigenvectors
of B are orthogonal to y, then every inequality is strict
inequality.

The following theorem is an extension of the previous
one, applied to the case of expanding a submatrix from a
vector extension.
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Theorem 2.5. ([5])Let A be n x n Hermition matrix,

partitioned as
B C
4-(& 5)

where B and D are mxm and (n—m) X (n—m) square ma-
trices respectively. Let eigenvalues of A and B be ordered
as A1(A) < A2(A) < -+ < A(A) and A (B) < X(B) <
-+ < A (B) respectively. Then

Ai(A) < Xi(B) € Aign—m(4), i=1,...,m

with equality in the lower bound for some i if and only
if there is an m -dimensional nonzero vector v such that
Bv = )\{(B)v and C*v = 0; equality in the upper bound
occurs for some 7 if and only if there is an m- dimensional
nonzero vector v such that Bv = \j1,—m(A)v and C*v =
0.

Ifie{l,...,m},1 <r<i, and

Aier1(A) = -+ = Ai(4) = Ni(B)
then \j_,+1(B) = --- = \i(B) and there are m-dimensional
orthonormal vectors vi,...,v, such that Bv; = )\i(B)Vj

and C*v; = 0 for each j =1,...,r.
Ifie{l,....mh1<r<m-—i+1, and

Ai(B) = Aitn-m(A) =+ = Nijn—mtr—1(4)
then \;(B) = -+ = ANjn-m+r—1(B) and there are m-
dimensional orthonormal vectors v, ..., v, such that Bv; =

Xi(B)vj and C*v; =0 for each j =1,...,r.

A simple graph is called a d-regular graph if the degree
of every vertex is d. The following is well known for regular
graph.

Proposition 2.6. A simple connected graph G is d-regular
graph if and only if the maximal degree A(G) of G is an
eigenvalue of G.
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According to the well-known Gershgorin theorem([5]),
we can see that A(G) is the largest eigenvalue. From The-
orem 2.2, it follows that the eigenvector corresponding to
A(G) consists entirely of positive entries. In fact, the eigen-
vector is the vector J = (1,1,---,1)T consisting entirely of
ones. The above proposition can be replaced by the follow-
ing proposition.

Proposition 2.7. A simple connected graph is a d-reqular
graph if and only if it has J, a vector consisting of all 1s,
as an eigenvector.

3. FUNDAMENTAL APPROACH TO EIGENVALUE
VARIATIONS WITH GRAPH EXPANSION

From now on, in this article, adding a vertex to a graph
means that the added vertex has edges connecting it to
the vertices of the original graph. Let Ag = [ai;] be the
adjacency matrix of a simple connected graph G of order n,
and let spec(Ag) = (A1, A\2,...,An). We consider whether
adding a vertex to graph G can result in a new spectrum
that contains only 0 in addition to the original spectrum.

Proposition 3.1. It is impossible to add a verter to a
connected simple graph such that only a zero is added to
the original spectrum.

Proof. Since matrix Ag = [a;;] is symmetric, we can see
that the following holds,

n n n

tr(A%) = Z Zafj = Z A2 (3.1)
i=1

j=1 i=1



Let Bg be the adjacency matrix if the connected graph

G’ obtained by adding a vertex G. Then Bgs can be repre-
Ac

sented as Bgr = for some n-dimensional nonzero

v
0
vector v. According to Equation 3.1, we can obtain the re-
sult. &

According to the previous Proposition 3.1, we have de-
termined that it is impossible to maintain the original spec-
trum and add only 0 by adding a vertex. Adding a vertex
to the graph to make it have an eigenvalue of 0 can be done
easily.

Therefore, if it is acceptable to add any non-zero real
number, we can investigate whether it is possible to main-
tain the original spectrum by adding a vertex. From Theo-
rem 2.1 and Proposition 3.1, the adjacency matrix of con-
nected graph has positive eigenvector w corresponding to
maximal eigenvalue. Therefore, there is no v € {0,1}"
such that v*w = 0, the following can be obtained.

Proposition 3.2. It is not possible to add a vertex to a
graph in such a way that the resulting graph maintains the
original spectrum.

The eigenvectors of matrix A are vectors in the column
space of matrix A. Therefore, we can ask whether a col-
umn vector can be an eigenvector. But we have a negative
results as follows.

Lemma 3.3. A simple connected graph G can not have the
columns of its adjacency matriz as eigenvector.

Proof. Let Ag = [a;j] be the adjacency matrix of simple
connected graph G. Suppose k-the column a; = (ayg, asg, - .
of Ag is an eigenvector of Ag. Since agr = 0, it is clear
that a is not J. Suppose the elements a;, ., @ik, - - ., @;,, % Of

A study on vertex addition strategies for preserving graph eigenvalues

-5 Ank

)T

25



26

Sung-Soo Pyo

a are 1, and all the others are 0. Let o = {i1,42,...,%m}
Then aj;, = 0 for j ¢ «,i; € a. By permutation simi-
larity, we place all the rows and columns corresponding to
« at the beginning. Then, the elements corresponding to
the rows of a and the columns of a¢ in Ag are all equal
to 0. This means that A2 becomes a zero matrix in the
following equation.

A Az |J J
=A 3.2
g allol e
This is a contradiction to the irreducibility of Ag. B

The following theorem is a direct consequence of Lemma
3.3.

Theorem 3.4. A simple connected and non-reqular graph
G has no eigenvector in {0,1}".

Even without using the above Lemma 3.3, it can be
known Theorem 3.4. If v € {0,1}" is an eigenvector corre-
sponding to the largest eigenvalue, it is a positive vector,
and by the Proposition 2.7, the graph must be regular. If
it is not an eigenvector corresponding to the largest eigen-
value, since the matrix is symmetric, the vector v must
be orthogonal to the positive vector corresponding to the
largest eigenvalue, which leads to a contradiction.

4. EXTENDING GRAPHS WITH SPECTRAL PROPERTIES
PRESERVATION

Let A be an eigenvalue of a Hermition matrix A and
w = (w1, wg, -+, wn)T be the eigenvector corresponding to
A. By adding the vector (wy,wa, - - - ,wy,0)” as the (n+1)-
th row and column to matrix A, we create an (n+1)x(n+1)
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matrix, denoted as AW. Specifically, it is as follows;

w_ [A W
(A

In this case, if p, which is different from ), is an eigen-
value of A, it becomes an eigenvalue of AY. This is because

if v.= (vi,ve,---,v,)7 is the eigenvector corresponding
to the eigenvalue g of matrix A, then the vector vi% =
(v1,v2,- - ,vn,0)T becomes the eigenvector corresponding

to the eigenvalue p of matrix AW. This is easily known
because v and w are orthogonal. This shows that in the
case of an n x n Hermitian matrix, by adding one row, it
is possible to preserve n — 1 eigenvalues.

Let us examine this fact in the case of graphs. It is
clear that a complete graph of order n, with all vertices
connected, can maintain n — 1 eigenvalues —1 by adding
one vertex to become a complete graph of order n + 1.
This means adding a vertex of highest degree to a complete
graph while preserving n — 1 eigenvalues. Now we can ex-
amine whether it is possible to preserve n—1 eigenvalues by
adding vertices of a minimum degree of 1. In other words,
this means adding a vector v where only one element is 1
and the rest are 0 as the (n + 1)-th row and column of the
adjacency matrix Ag. If the vector v added to the graph
retains n — 1 eigenvalues, then v must be orthogonal to the
n — 1 eigenvectors, which implies that v itself must also be
an eigenvector due to the properties of symmetric matrices.
This contradicts the previous Theorem 3.4.

In fact, it is generally impossible to preserve n — 1 eigen-
values, as shown in the following theorem. From the 3.4,
we can get the following.
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Theorem 4.1. Let Ag be an adjacency matriz of non-
reqular graph of order n. Then there is no way to extending
a vertez for preserving n — 1 eigenvalues.

Proof. Let AY, is the extended adjacency matrix such that

v AG v
AG — VT 0:| .

Since Ag is an n X n symmetric matrix, there exist n
orthogonal eigenvectors. From 2.2, v is orthogonal to n—1
eigenvectors of Ag. This leads to v being eigenvector of
Ag. From 3.4, v is not (0,1)- vector. B

The condition for a special eigenvalue to be preserved
when adding a vertex to a simply connected graph is as
follows.

Theorem 4.2. Let G be a simple connected non reqular
graph G of order n with eigenvalues \; > Ay > -+ > Ay.

(1) Eigenvalue A1 cannot be preserved by a vertex is
added.

(2) Fori > 1, the necessary and sufficient condition for
the eigenvalue \; to be preserved is the existence
of a v € {0,1}" wvector that is orthogonal to the
etgenvector corresponding to the eigenvalue ;.

(3) If v is an eigenvector corresponding to p with i-th
element 0, then by adding i-th row of Ag to the
(n+ 1)-th row and column, the extended adjacency
matriz has an eigenvalue p.

Proof. (1) The eigenvector corresponding to A; consists of
positive entries, so it cannot be orthogonal to any (0,1)
vector. Therefore, by Proposition 3.1, it cannot be pre-
served.

(2) This naturally follows from Proposition 3.1.
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(3) The fact that the i-th entry of the eigenvector v cor-
responding to eigenvalue A is 0 means that the eigenvector
v is orthogonal to the i-th row of the matrix. Therefore,
we can obtain the result. W

Theorem 4.3. Let G be a simple connected graph of or-
der n and let G' be a simple connected graph obtained by
adding m vertices to G, 1 <m < n. Then spec(G) can not
contained spec(G').

Proof. Let n x n matrix A be the adjacency matrix of G
and A’ be the adjacency matrix of G’. Then

Al = <BAT g) , whereD € M,,
Since G’ is connected graph, B # O. From 2.4, A(A4) €
spec(A’) if and only if equality holds. This means that
A(A) € spec(A’) if and only if BTv = o for eigenvector v
corresponding to A(A). From 2.1, we know that there exist
positive eigenvector w corresponding maximum eigenvalue

of A. Thus B"w # o. This lead maximum eigenvalue of
A can not contained in the spectrum of spec(A’). B

Let G be a graph of order n, H a graph of order m, v
an n-dimensional vector, w an m-dimensional vector, and
let v be a vertex not included in either G or H. Let vertex
v be connected to graph G via the vector v, and let the
vertex v be connected to graph H via the vector w. We
define this as the v-connection of graph G and H, and we
will denote it as (v,G, H,v,w). For example, let Ag be
the adjacency matrix of G and Ay be adjacency matrix of
H, the adjacency matrix of G-connection of G and H is
the follows
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12} vy

vy
z

U3 Vs w3 Wy

w2 wy

FiGUrE 1. The graph of z-connection of G
and H

Ag v O
AQC);7H = VT 0 WT
OT W AH
The Figure 1. illustrates an example of such graph for-
mation, and adjacency matrix is as follows;

)
—
)
)
—
)
)

H OO, EFEFOOOOO
O O FrRr OO OoO o oo

DO OO = O

Q

ISy

|
S OO O~ OO = =
SO OO OoOO O
OO OO OO
SO OO OO ~=O
SO RRPR OO kOO
= =00 000 O0o
S OO R R OOOO

Theorem 4.4. The spectrum of the adjacency matriz
A% ¢ of a v-connection of G and G, (v,G,G,v,w) con-
tains all eigenvalues of G. Let r be a eigenvector of G



A study on vertex addition strategies for preserving graph eigenvalues

corresponding to the eigenvalue . If r-v # 0, then n+ 1
dimensional vector (—3v,0,v) is an eigenvector of AZ,
corresponding to the eigenvalue . Ifr-v =0, then (n+1)-
dimensional vector (v,0,0) is an eigenvector of Ag o cor-
responding to the eigenvalue \.

Proof. Let A  be the adjacency matrix of v-connection
(v,G,G,v,w). According to the matrix determinant ex-
pansion along the (n+1)-th row, it can be seen that the de-
terminant of this matrix is always a multiple of det(Ag o).
This fact applies similarly to Ag , — AI, and thus, if A is
an eigenvalue of the graph G, we can see that it becomes
an eigenvalue of (v, G, G, v, w) as well.

Let r be an eigenvector of the adjacency matrix Ag cor-
responding to the eigenvalue A. Then the following equa-
tion shows that the eigenvector of Aé,c-

VW VW VW
Ag v O\ =Spr —%rAcr —VaT
vi 0 v 0 = |=Ypr-vtr-wl =2\ 0
O w Ag r Agr r
|

5. CONCLUSION

We studied the method of adding vertices to a graph
while preserving the eigenvalues of the original graph. As
a result, we showed that it is impossible to add up to n
vertices to a graph of order n while preserving all n eigen-
values. Furthermore, except for special cases, it is also
impossible to preserve n — 1 eigenvalues. We also found re-
sults concerning whether each individual eigenvalue can be
preserved. This is clearly related not only to the problem
of graph extensions but also to the relationship with the
eigenvalues of subgraphs.
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