A PROBABILISTIC PROOF OF A RECURRENCE RELATION FOR SUMS OF VALUES OF DEGENERATE FALLING FACTORIALS

TAEKYUN KIM, DAE SAN KIM, AND DMITRY V. DOLGY

ABSTRACT. In this paper, we consider sums of values of degenerate falling factorials and give a probabilistic proof of a recurrence relation for them. This may be viewed as a degenerate version of the recent probabilistic proofs on sums of powers of integers.

1. Introduction

Jacob Bernoulli considered sums of powers of the first n positive integers, $1^k + 2^k + \cdots + n^k$, which have been a topic of research for centuries. We note that

$$1+2+3+\cdots+n = \binom{n+1}{2},$$

$$1^2+2^2+3^2+\cdots+n^2 = \frac{n(n+1)(2n+1)}{6},$$

$$1^3+2^3+3^3+\cdots+n^3 = (1+2+3+\cdots+n)^2, \quad (\text{see } [6,7,9-11]).$$

The Bernoulli polynomials are defined by

(1)
$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see } [1 - 20]).$$

When x = 0, $B_n = B_n(0)$ are called the Bernoulli numbers. By (1), we get

(2)
$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k}, \quad (n \ge 0), \quad (\text{see } [10, 12]).$$

From (1), we note that

(3)
$$\sum_{k=0}^{n-1} (k+x)^m = \frac{1}{m+1} \sum_{l=0}^m {m+1 \choose l} B_l(x) n^{m+1-l},$$

where $m, n \in \mathbb{N}$.

²⁰¹⁰ Mathematics Subject Classification. 11B68; 11B83.

Key words and phrases. probabilistic proof; recurrence relation; sums of values of degenerate falling factorials.

Denoting the sum $1^m + 2^m + \cdots + n^m$ by $S_m(n)$, by (3), we get

(4)
$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose l} B_l(n+1)^{m+1-l} = \int_0^{n+1} B_m(u) du,$$

(5)
$$S_m(n) = \frac{(n+1)^{m+1} - 1}{m+1} - \frac{1}{m+1} \sum_{r=0}^{m-1} {m+1 \choose r} S_r(n),$$

(6)
$$= \frac{n^{m+1}}{m+1} + \sum_{r=0}^{m-1} {m \choose r} \frac{(-1)^{m-r+1}}{m-r+1} S_r(n),$$

where m is a positive integer (see [6,7,10]).

For any $\lambda \in \mathbb{R}$, the degenerate exponentials are defined by

(7)
$$e_{\lambda}^{x}(t) = \sum_{n=0}^{\infty} (x)_{n,\lambda} \frac{t^{n}}{n!}, \quad (\text{see } [11-15]),$$

where the degenerate falling factorials are given by

$$(x)_{0,\lambda} = 1, (x)_{n,\lambda} = x(x-\lambda)(x-2\lambda)\cdots(x-(n-1)\lambda), (n \ge 1).$$

In particular, for x = 1, we denote them by $e_{\lambda}(t) = e_{\lambda}^{1}(t)$.

The degenerate Bernoulli polynomials are defined by

(8)
$$\frac{t}{e_{\lambda}(t) - 1} e_{\lambda}^{x}(t) = \sum_{n=0}^{\infty} \beta_{n,\lambda}(x) \frac{t^{n}}{n!}, \quad (\text{see } [4, 16, 20]).$$

When x = 0, $\beta_{n,\lambda} = \beta_{n,\lambda}(0)$ are called the degenerate Bernoulli numbers.

The degenerate Stirling numbers of the second kind are defined by Kim-Kim as

(9)
$$(x)_{n,\lambda} = \sum_{k=0}^{n} {n \brace k}_{\lambda}(x)_{k}, \quad (n \ge 0), \quad (\text{see } [8]),$$

where the falling factorials are given by

$$(x)_0 = 1, (x)_n = x(x-1)(x-2)\cdots(x-n+1), (n \ge 1).$$

In this paper, we study sums of values of degenerate falling factorials which are given by

(10)
$$S_{k,\lambda}(n) = (1)_{k,\lambda} + (2)_{k,\lambda} + \dots + (n)_{k,\lambda} = \sum_{i=1}^{n} (j)_{k,\lambda}, \quad (k \in \mathbb{N}).$$

In Section 1, we recall the necessary facts that are needed throughout this paper. After recalling two expressions of $S_{k,\lambda}(n)$, we derive two recurrence relations for them in Section 2. Let X be a nonnegative integer-valued random variable, and let k be a positive integer. Then, in Section 3, we show first that the k-th degenerate moment of X is given by $E\left[(X)_{k,\lambda}\right] = \sum_{x=0}^{\infty} \left((x+1)_{k,\lambda} - (x)_{k,\lambda}\right) P\{X > x\}$. Then we apply this to the uniform random variable X supported on $\{0,1,2,\ldots,n\}$ to derive a recurrence relation for $S_{k,\lambda}(n)$.

2. Some formulas for sums of values of degenerate falling factorials

From (8), we note that

(11)
$$\sum_{m=0}^{\infty} \sum_{k=0}^{n-1} (k+x)_{m,\lambda} \frac{t^m}{m!} = \sum_{m=0}^{\infty} \frac{1}{m+1} \left(\beta_{m+1,\lambda}(n+x) - \beta_{m+1,\lambda}(x) \right) \frac{t^m}{m!}.$$

Thus, by (11), we get

(12)
$$\sum_{k=0}^{n-1} (k+x)_{m,\lambda} = \frac{1}{m+1} \left(\beta_{m+1,\lambda}(n+x) - \beta_{m+1,\lambda}(x) \right)$$
$$= \frac{1}{m+1} \sum_{l=0}^{m} {m+1 \choose l} \beta_{l,\lambda}(x)(n)_{m+1-l,\lambda},$$

where m is nonnegative integer.

From (12), for $m, n \in \mathbb{N}$ and x = 0, we have the next proposition. This is also obtained in [14, Lemma 7].

Proposition 2.1. *For* $m, n \in \mathbb{N}$ *, we have*

$$S_{m,\lambda}(n-1) = \frac{1}{m+1} \sum_{l=0}^{m} \binom{m+1}{l} (n)_{m+1-l,\lambda} \beta_{l,\lambda}.$$

As it is done in [14, Theorem 8], by using (9) and (10), we get the following theorem.

Theorem 2.2. For $k \in \mathbb{N}$, we have

$$S_{k,\lambda}(n) = \sum_{l=1}^{k} \begin{Bmatrix} k \\ l \end{Bmatrix}_{\lambda} \binom{n+1}{l+1} l!.$$

Now, we observe that

(13)
$$(x+y)_{n,\lambda} = \sum_{k=0}^{n} \binom{n}{k} (x)_{k,\lambda} (y)_{n-k,\lambda}, \quad (n \ge 0).$$

From (10), we note that, for $k \in \mathbb{N}$,

(14)

$$\begin{split} \sum_{r=0}^k \binom{k+1}{r} (1)_{k+1-r,\lambda} S_{r,\lambda}(n) &= \sum_{j=1}^n \sum_{r=0}^k \binom{k+1}{r} (1)_{k+1-r,\lambda} (j)_{r,\lambda} \\ &= \sum_{j=1}^n \left(\sum_{r=0}^{k+1} \binom{k+1}{r} (1)_{k+1-r,\lambda} (j)_{r,\lambda} - (j)_{k+1,\lambda} \right) \\ &= \sum_{j=1}^n \left((j+1)_{k+1,\lambda} - (j)_{k+1,\lambda} \right) \\ &= (n+1)_{k+1,\lambda} - (1)_{k+1,\lambda}. \end{split}$$

By (14), we get

(15)
$$(n+1)_{k+1,\lambda} - (1)_{k+1,\lambda} = \sum_{r=0}^{k} {k+1 \choose r} (1)_{k+1-r,\lambda} S_{r,\lambda}(n)$$

$$= \sum_{r=0}^{k-1} {k+1 \choose r} (1)_{k+1-r,\lambda} S_{r,\lambda}(n) + (k+1) S_{k,\lambda}(n).$$

Thus, by (15), we obtain the following theorem.

Theorem 2.3. For $k \in \mathbb{N}$, we have the recurrence relation

$$S_{k,\lambda}(n) = \frac{(n+1)_{k+1,\lambda} - (1)_{k+1,\lambda}}{k+1} - \frac{1}{k+1} \sum_{r=0}^{k-1} {k+1 \choose r} (1)_{k+1-r,\lambda} S_{r,\lambda}(n).$$

We note that

(16)
$$(n)_{k+1,\lambda} = \sum_{j=1}^{n} \left((j)_{k+1,\lambda} - (j-1)_{k+1,\lambda} \right), \quad (k \in \mathbb{N}).$$

From (13), we note that

(17)

$$\begin{split} &(j)_{k+1,\lambda} - (j-1)_{k+1,\lambda} = (j)_{k+1,\lambda} - \sum_{r=0}^{k+1} \binom{k+1}{r} (-1)_{k+1-r,\lambda} (j)_{r,\lambda} \\ &= (j)_{k+1,\lambda} - \sum_{r=0}^{k+1} \binom{k+1}{r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} (j)_{r,\lambda} \\ &= (j)_{k+1,\lambda} - (j)_{k+1,\lambda} + (k+1)(j)_{k,\lambda} - \sum_{r=0}^{k-1} \binom{k+1}{r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} (j)_{r,\lambda} \\ &= (k+1)(j)_{k,\lambda} - \sum_{r=0}^{k-1} \binom{k+1}{r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} (j)_{r,\lambda}, \quad (k \in \mathbb{N}), \end{split}$$

where the degenerate rising factorials are given by

$$\langle x \rangle_{0,\lambda} = 1, \ \langle x \rangle_{k,\lambda} = x(x+\lambda)(x+2\lambda)\cdots(x+(k-1)\lambda), \ (k \ge 1).$$

Thus, by (16) and (17), we get

(18)
$$(n)_{k+1,\lambda} = \sum_{j=1}^{n} \left((j)_{k+1,\lambda} - (j-1)_{k+1,\lambda} \right)$$

$$= (k+1) \sum_{j=1}^{n} (j)_{k,\lambda} - \sum_{r=0}^{k-1} {k+1 \choose r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} \sum_{j=1}^{n} (j)_{r,\lambda}$$

$$= (k+1) S_{k,\lambda}(n) - \sum_{r=0}^{k-1} {k+1 \choose r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} S_{r,\lambda}(n).$$

From (18), we obtain the following theorem.

Theorem 2.4. *For* $k \in \mathbb{N}$ *, we have*

$$S_{k,\lambda}(n) = \frac{(n)_{k+1,\lambda}}{k+1} + \frac{1}{k+1} \sum_{r=0}^{k-1} {k+1 \choose r} (-1)^{k+1-r} \langle 1 \rangle_{k+1-r,\lambda} S_{r,\lambda}(n).$$

3. A PROBABILISTIC PROOF OF A RECURRENCE RELATION FOR $S_{k,\lambda}(n)$

Recently, probabilistic methods are used in deriving recurrence formulas for sums of powers of integers, (see [6,7]). In this section, we give a probabilistic proof of a recurrence relation for sums of values of degenerate falling factorials.

Let X be a nonnegative integer-valued random variable, and let k be any positive integer. Then we note that

(19)
$$\sum_{x=0}^{\infty} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) P\{X > x\}$$

$$= (1)_{k,\lambda} P\{X > 0\} + \left((2)_{k,\lambda} - (1)_{k,\lambda} \right) P\{X > 1\} + \left((3)_{k,\lambda} - (2)_{k,\lambda} \right) P\{X > 2\}$$

$$+ \left((4)_{k,\lambda} - (3)_{k,\lambda} \right) P\{X > 3\} + \cdots$$

$$= (1)_{k,\lambda} P\{X = 1\} + (1)_{k,\lambda} P\{X > 1\} - (1)_{k,\lambda} P\{X > 1\} + (2)_{k,\lambda} P\{X = 2\}$$

$$+ (2)_{k,\lambda} P\{X > 2\} - (2)_{k,\lambda} P\{X > 2\} + (3)_{k,\lambda} P\{X = 3\} - (3)_{k,\lambda} P\{X > 3\}$$

$$= (1)_{k,\lambda} P\{X = 1\} + (2)_{k,\lambda} P\{X = 2\} + (3)_{k,\lambda} P\{X = 3\} + \cdots$$

$$= \sum_{x=0}^{\infty} (x)_{k,\lambda} P\{X = x\} = E\left[(X)_{k,\lambda} \right].$$

Therefore, by (19), we obtain the following theorem.

Theorem 3.1. Let X be a nonnegative integer-valued random variable. For $k \in \mathbb{N}$, the k-th degenerate moment of X is given by

$$E\left[(X)_{k,\lambda}\right] = \sum_{k=0}^{\infty} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) P\{X > x\}.$$

Assume that *X* has support in $\{0, 1, 2, ..., n\}$. Then we have

(20)
$$\sum_{x=0}^{n} (x)_{k,\lambda} P\{X = x\} = \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) P\{X > x\}$$

$$= \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) \sum_{y=x+1}^{n} P\{X = y\},$$

where k is a positive integer.

Now, let *X* be the uniform random variable supported on $\{0, 1, 2, ..., n\}$, that is, $P\{X = x\} = \frac{1}{n+1}$, for $x \in \{0, 1, 2, ..., n\}$. Then we note that

$$\sum_{y=x+1}^{n} P\{X = y\} = \frac{n-x}{n+1}.$$

From (20), we note that

(21)
$$\sum_{x=0}^{n} (x)_{k,\lambda} \frac{1}{n+1} = \sum_{x=0}^{n} (x)_{k,\lambda} P\{X = x\}$$
$$= \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) \sum_{y=x+1}^{n} P\{X = y\}$$
$$= \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) \frac{n-x}{n+1}, \quad (k \in \mathbb{N}).$$

By (21), we get

(22)
$$S_{k,\lambda}(n) = \sum_{x=0}^{n} (x)_{k,\lambda} = \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) (n-x)$$

$$= n \sum_{x=0}^{n} \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right) - \sum_{x=0}^{n} x \left((x+1)_{k,\lambda} - (x)_{k,\lambda} \right)$$

$$= n(n+1)_{k,\lambda} - \sum_{x=0}^{n} x \left(\sum_{r=0}^{k} \binom{k}{r} (x)_{r,\lambda} (1)_{k-r,\lambda} - (x)_{k,\lambda} \right)$$

$$= n(n+1)_{k,\lambda} - \sum_{x=0}^{n} \sum_{r=0}^{k-1} \binom{k}{r} (x-r\lambda+r\lambda)(x)_{r,\lambda} (1)_{k-r,\lambda}$$

$$= n(n+1)_{k,\lambda} - \sum_{x=0}^{n} \sum_{r=0}^{k-1} \binom{k}{r} (x)_{r+1,\lambda} (1)_{k-r,\lambda}$$

$$= n(n+1)_{k,\lambda} - \sum_{x=0}^{n} \sum_{r=0}^{k-2} \binom{k}{r} (x)_{r+1,\lambda} (1)_{k-r,\lambda} - k \sum_{x=0}^{n} (x)_{k,\lambda}$$

$$-\lambda \sum_{x=0}^{n} \sum_{r=0}^{k-1} r \binom{k}{r} (x)_{r,\lambda} (1)_{k-r,\lambda} - k \sum_{x=0}^{n} (x)_{k,\lambda}$$

$$= n(n+1)_{k,\lambda} - \sum_{r=0}^{k-2} (1)_{k-r,\lambda} \binom{k}{r} S_{r+1,\lambda} (n) - k S_{k,\lambda} (n)$$

$$-\lambda \sum_{r=1}^{k-1} r \binom{k}{r} (1)_{k-r,\lambda} S_{r,\lambda} (n)$$

$$= n(n+1)_{k,\lambda} - \sum_{r=1}^{k-1} (1)_{k+1-r,\lambda} \binom{k}{r-1} S_{r,\lambda} (n) - k S_{k,\lambda} (n)$$

$$-\lambda \sum_{r=1}^{k-1} r \binom{k}{r} (1)_{k-r,\lambda} S_{r,\lambda} (n),$$

where k is a positive integer.

By (22), we obtain the following theorem.

Theorem 3.2. For $k \in \mathbb{N}$, we have

$$S_{k,\lambda}(n) = \frac{n(n+1)_{k,\lambda}}{k+1} - \frac{1}{k+1} \sum_{r=1}^{k-1} (1)_{k+1-r,\lambda} {k \choose r-1} S_{r,\lambda}(n) - \frac{\lambda}{k+1} \sum_{r=1}^{k-1} r {k \choose r} (1)_{k-r,\lambda} S_{r,\lambda}(n).$$

4. CONCLUSION

In this paper, we derived three recurrence relations for the sums of values of degenerate falling factorials $S_{k,\lambda}(n) = (1)_{k,\lambda} + (2)_{k,\lambda} + \cdots + (n)_{k,\lambda}$, $(k \in \mathbb{N})$. They are Theorems 2.3, 2.4 and 3.2. If we let $\lambda \to 0$, then Theorem 2.3 and Theorem 2.4

boil down to (5) and (6), respectively. In addition, we obtain another recurrence relation for $S_k(n)$ by letting $\lambda \to 0$. Namely, we get

$$S_k(n) = \frac{n(n+1)^k}{k+1} - \frac{1}{k+1} \sum_{r=1}^{k-1} {k \choose r-1} S_r(n).$$

REFERENCES

- [1] Aydin, M. S.; Acikgoz, M.; Araci, S. A new construction on the degenerate Hurwitz-zeta function associated with certain applications, Proc. Jangjeon Math. Soc. 25 (2022), no. 2, 195-203.
- [2] Barman, K.; Chakraborty, B.; Morthini, R. Two Classical formulas for the sums of powers of consecutive integers via complex analysis, Complex Anal. Synerg. 2024 (2024), Article no. 10:5.
- [3] Beardon, A. F. Sums of powers of integers, Amer. Math. Monthly 103 (1996), no. 3, 201-213.
- [4] Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
- [5] Dolgy, D. V.; Kim, D. S; Kim, H. K.; Kim, T. Degenerate harmonic and hyperharmonic numbers, Proc. Jangjeon Math. Soc. 26 (2023), no. 3, 259–268.
- [6] Farhadian, R. A probabilistic proof of a recursion formula for sums of integer powers, Integers 23 (2023), Paper No. A88.
- [7] Hu, X.; Zhong, Y. A probabilistic proof of a recursion formula for sums of powers, Amer. Math. Monthly 127 (2020), no. 2, 166-168.
- [8] Kim, D. S.; Kim, T. A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys. 27 (2020), no. 2, 227-235.
- [9] Kim, G.; Kim, B.; Choi, J. The DC-algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 137-145
- [10] Kim, T. Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18.
- [11] Kim, T.; Kim, D. S. Generalization of Spivey's recurrence relation, Russ. J. Math. Phys. 31 (2024), no. 2, 218-226.
- [12] Kim, T.; Kim, D. S. Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys. 30 (2023), no. 4, 528-542.
- [13] Kim, T.; Kim, D. S.; Kim, W.; Kwon. J. A note on modified degenerate gamma random variables, Proc. Jangjeon Math. Soc. 27 (2024), no. 1, 91–95.
- [14] Kim, T.; Kim, D. S.; Jang, L.-C.; Kim, H. Y. A note on discrete degenerate random variables, Proc. Jangjeon Math. Soc. 23 (2020), no. 1, 125–135.
- [15] Kim, T.; Rim, S.-H.; Simsek, Y. A note on the alternating sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no. 2, 159-164.
- [16] Kim, T.; Kim, D. S.; Kim, H. K. λ-Whitney numbers and λ-Dowling polynomials, Proc. Jangjeon Math. Soc. 26 (2023), no. 3, 227-242.
- [17] Park, J.-W.; Pyo, S.-S. A note on degenerate Bernoulli polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang) 32 (2022), no. 4, 509-525.
- [18] Simsek, Y. Identities and relations related to combinatorial numbers and polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 1, 127-135.
- [19] Spivey, M. Z. A combinatorial view of sums of powers, Math. Mag. 94 (2021), no. 2, 125-131.
- [20] Xu, R.; Kim, T.; Kim, D. S.; Ma, Y. Probabilistic degenerate Fubini polynomials associated with random variables, J. Nonlinear Math. Phys. 31 (2024), no. 1, Paper No. 47.

DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA

Email address: tkkim@kw.ac.kr

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA

Email address: dskim@sogang.ac.kr

KWANGWOON GLOBAL EDUCATION CENTER, KWANGWOON UNIVERSITY, SEOUL, 139-701, REPUBLIC OF KOREA

Email address: dvdolgy@gmail.com