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TENSOR PRODUCT OF BAKER’S THEOREM

HYUN SEOK LEE

ABSTRACT. In this article, we will give the historical background on Baker’s
theorem both in qualitative and in the quantitative form, in the homogeneous
as well as in the non-homogeneous version. The main aim of this article is to
describe the Baker’s theorem (homogeneous form) equivalent to that as pointed
out by J-P.Serre in his Bourbaki lecture on Baker’s work, it means that the natural
map from the tensor product (Q + £) ®p Q in C, which extends the injection
from Q + L to C, is still injective.

1. INTRODUCTION

In [1], references to the existence of transcendental numbers go back many
centuries. The “transcendental” comes from Leibniz in his 1682 paper where he
proved sinx is not an algebraic function of x. Certainly Leibniz believed that, be-
sides rational and irrational numbers (by “irrational” he meant algebraic irrational
numbers in modern terminology), there also exist transcendental numbers. In [2],
Liouville proved a fundamental theorem concerning approximations of algebraic
numbers by rational numbers in 1853. This theorem gives first example of tran-
scendental numbers.

Theorem 1.1 (J. Liouville, 1853). If a is algebraic of degree d, then there is a
positive constant C(a), i.e. depending only on o, such that for all rationals ;—7,
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From this theorem, we can find explicit examples of transcendental numbers.

Corollary 1.2. The number

is transcendental number.

In [3], there appeared Hermite’s epoch-making memoir entitled Sur la fonction
exponentielle in which he established the transcendence of e, the natural base of
logarithms. Liouville had shown in 1840, directly from the defining series, that in
fact neither e nor ¢> could be rational or quadratic irrational; but Hermite’s work
began a new era. In particular, within a decade, Lindemann succeeded in general-
izing Hermite’s method and, in a classical paper, he proved that 7 is transcendental
and solved thereby the ancient Greek problem concerning the quadrature of the cir-
cle. The work of Hermite and Lindemann was simplified by Weierstrass in 1885,
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and further simplified by Hilbert, Hurwitz and Gordan in 1893. In [4], the tran-
scendence of e was first proved by Hermite in 1873 by using very different ideas
and applying the approximation of analytic functions by rational functions.

Theorem 1.3 (C. Hermite, 1873). The number e is transcendental number.
Theorem 1.4 (F. Lindemann, 1882). The number T is transcendental number.

In [4], Lindemann stated more general results. One of them is Hermite-Lindemann
Theorem:

Theorem 1.5 (Hermite-Lindemann). If B is a non-zero complex number. Then at
least one of the two numbers B and eP is transcendental.

Thus, if B is algebraic, then P is transcendental number. Let o be non-zero
algebraic number, and if A is any non-zero determination of its logarithm, then A
is a transcendental number. Now, we define the set £ of logarithm of non-zero
algebraic numbers, that is the inverse image of the multiplicative group @X by the
exponential map :

L=exp (Q) = {he C:é e@x}.
Theorem 1.6 (Lindemann-Weierstrass, 1885). If By, ... iSn are distinct algebraic
numbers, then ® s ,eﬁ” are linearly independent over Q.

The theorem of Hermite-Lindemann can be written Qn £ = {0}, thatis, A (#0) €
L is transcendental number.

This is one of the very few results on algebraic independence of numbers con-
nected with the exponential function. After the contributions of J. Liouville, Ch.
Hermite, F. Lindemann and K. Weiertral3, the next important step was provided by
the work of C. L. Siegel , A. O. Gel’fond and Th. Schneider, which led to the
solution of Hilbert’s seventh problem.

The story of this problem is as follows. In his “Introductio in analysin infinito-
rum”, L. Euler defined the exponential and logarithm functions, and said:

From what we have seen, it follows that the logarithm of a number will not be a
rational number unless the given number is a power of the base a. That is, unless
the number b is a power of the base a, the logarithm of b cannot be expressed as a
rational number. In case b is a power of the base a, then the logarithm of b cannot
be an irrational number. If, indeed, logh = \/n, then avn = b, but this is impossi-
ble if both a and b are rational. It is especially desirable to know the logarithms
of rational numbers, since from these it is possible to find the logarithms of frac-
tions and also surds. Since the logarithms of numbers which are not the powers
of the base are neither rational nor irrational, it is with justice that they are called
transcendental quantities. For this reason, logarithms are said to be transcendental.

D. Hilbert proposed this question as the seventh of his problem:

Question. The expression ab for an algebraic base o and an irrational al-
gebraic exponent B, e.g. the number 2V2 or o™ = (-=1)7, always represents a
transcendental or at least an irrational number.

In 1900, at the International Congress of Mathematicians held in Paris, Hilbert
raised, as the seventh of his famous list of 23 problems, the question whether an
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irrational logarithms of an algebraic number to an algebraic base is transcenden-
tal. The question is capable of various alternative formulations; thus one can ask
whether an irrational quotient of natural logarithms of algebraic number is tran-
scendental, or whether of is transcendental for any algebraic number o # 0,1 and
any algebraic irrational 3.

Theorem 1.7 (Gelfond-Schneider, 1934). Suppose that a. 0,1 and that B is irra-
tional. Then o.,B and aP cannot all be algebraic.

In particular, 2V2 and € = (1) are transcendental numbers. In the same
year, Gelfond published extended his results [5] of the Gelfond-Schneider Theorem
without proof.

This shows that £, which is a Q-vector space, is not a Q-vector space. More
precisely, the quotient A; /A, of two non-zero elements of L is either rational or a
transcendental number. For instance log2/log3 is transcendental number. Such a
quotient cannot be an algebraic irrational number, like i = /=1 or like /2. The
connection with Hilbert’s problem is most easily seen by stating the Theorem of
Gel’fond-Schneider as follows:

Theorem 1.8. If A and B are two complex numbers with k. 0 and 3 € Q, then one
at least of the three numbers et ,B and e is transcendental.

Gelfond was the first to study algebraic independence of the values of the expo-
nential function at points that are not necessarily algebraic. In 1948, he conjectured
that if ., € Q, a0 20,1, degB =d >2, then (xﬁ,ocf’z, ... ,OcBlFl are algebraically
independent. In general this conjecture is still open. We will discuss it later. Gel-
fond proved the conjecture for d = 3 in 1948. The following result is more general
than Gelfond’s.

Theorem 1.9 (R. Tijdemann, 1971). Let p,q be positive integers with ’;q—j >2.
Let {ay,...,a,} and {b1,...,b,} be two sets of Q-linearly independent complex
numbers. Then the transcendence degree of

Qlay,...,ap, e ... ) 22,

In 1949, Gelfond proved Theorem 5.1 for the case p = g =3 with some conditions
on the numbers g;,b; for 1 <i<p, 1< j<gq. Theorem 5.1 in the present general
form was proved by Tijdemann in 1971. We derive some of consequences
Theorem 1.10 (A. Gelfond, 1948). Let o,p € Q with o # 0,1 and degP = 3. Then
ab ,OLB2 are algebraically independent.

Proof. Take p=q=3, a;=B’', b; =B/ 'loga for j=1,2,3. Since degP =3, all
the numbers B/, o®’ for j > 1 are algebraic over Q(aP, o ’ ). Hence by Theorem
5.1, oP and ob” are algebraically independent. O
Theorem 1.11 (Shmelev, 1968). Let oy, 0 € @ such that logo, and logo, are
linearly independent over Q. Suppose B € Q with degP =2. Then at least two of

1
L o o
g

the numbers are algebraically independent.

Proof. We take p=4, g=2, Yy = igig?, ai=1, ay=7v, a3 =B, as =By, by =
logai;, by = Blogo,. Then we see that %’ for 1 <i<4, 1< j<?2 are algebraic

over Q('Y,OCF , ocf ). Now the result follows from Theorem 1.8. O
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2. ALAN BAKER

In his book [3], A. O. Gel’fond emphasized the importance of getting a general-
ization of this statement to more than two logarithms. Let A1, ---,A,, be n-logarithms
of algebraic numbers which are linearly independent over Q. The question is to
prove that they are also linearly independent over the field Q of algebraic numbers.
For n = 2, this is Theorem 1.8 of Gelfond-Schneider. This problem was solved in
1966 by A. Baker

Theorem 2.1 (Baker-Homogeneous Case). . If A1, A, are Q-linearly indepen-
dent element of L, then they are linearly independent over Q.

Shortly later, A. Baker extended his result to a non-homogeneous situation as
follows:

Theorem 2.2 (Baker-General Case). If A,---, A, are Q-linearly independent ele-
ments of L, then the n+ 1 numbers 1,\y,-+, A, are linearly independent over Q.

From Baker’s Theorem, one easily deduces that if a number of the form
eﬁooc1 LeaPr = exp{Bo+Pihs +-+Bukn}

(with B; € Q,A; € £ and o; = ehie @X) is algebraic, then Py = 0, and moreover, either
A1, Ay, are all zero, or else the numbers 1, -+, B, are lineraly independent over
Q. Also Theorem shows that any non-zero element in the (Q-vector space

{BiA1++PBuhy s 20, BieQ, Aie L}

spanned by L is transcendental. It will be convenient to show that several state-
ments are equivalent to Baker’s homogeneous Theorem 1.8. As pointed out by J-P.
Serre in his Bourbaki lecture on Baker’s work, it means that the natural map from
the tensor product (Q + £) ®; Q in C, which extends the injection from Q + £ to
C, is still injective.

Lemma 2.3. Let k c K be two fields, € be a K-vector space, and M be a k-vector
space subspace in €. The three following statements are equivalent.

(1) Let m be a positive integer and let Ai,---, A, be elements of M which are
linearly independent over k. Then these elements are also linearly inde-
pendent over K in €.

(2) Let m be a positive integer. Let \y,-+, A, be elements of M, not all vanish-
ing, and let By,---,B,, be k-linearly independent elements of K. Then

lel +eeet Bmkm #0.

(3) Let m be a positive integer. Let \y,-++, A, be k-linearly independent element
of M and By,-+-, B be k-linearly independent element of K. Then

Bl}h] +eeet Bm}bm #0.
Proof. First, we can easily show that (1) = (3).
(2) = (1). Assume that for some m > 1 we have a relation B1A; +-+ B\, =0

with By, B not all zero in K. Let B{,---,B; (with 0 < s < m)be a basis of the
k-vector space they span. We can write

s
Bi: ZC,’jB; (1 Sllﬁm),
=
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with ¢;; € k, which not all zero. Then

Since B{,--, B, are k-linearly independent, we deduce from (2)
m
ZC,‘j)\.i =0 forl<j<s.
i=1

Therefore, Ay ,--+,A,, are K-linearly independent.
(3) = (2) Assume BiAq + -+ BAy = 0 with By, -, B, linearly independent

over kin K and A;,-+-, A, in M. We shall conclude A =--- = A,, = 0. Renumbering
A1y, Ay if necessary, we may assume that A, -+, A, = 0. (for some r with 0 < r <m)
is a basis of the k-vector space spanned by Aq, -+, A,

-
7»,-:2(:[-’,-7»]-, (r+1§i§m),
=1

where ¢;; are in K. We deduce

Zyjkj:OWithyj:Bj+ Z CijBia (1§j§}’).
j=1 i=r+1

Using (3) (with m replaced by r), we deduce from the linear independence of
A1, Ay over k that the r elements 7, --,7, are k-linearly dependent in K. How-
ever, since By,---,B,, are linearly independent over k, the only possibility is r = 0,
which means A; =---=2A,, = 0. O

Remark. When k=Q, K=Q, M =L and € = C, assertion 1.) is nothing but
Theorem.

3. BAKER’S THEOREM IN TENSOR PRODUCT VERSION

In this section, we will prove that Baker’s theorem equivalent to the following.

Theorem 3.1. Baker’s theorem can be represented the following tensor product:
The injection of Q + L into C extends to an injection of (Q+ L) ®q Q into C. The
image is the Q-vector space L c C spanned by 1 and L: (Q+L) ®Q@ ~L

Now, we will prove that the theorem 3.1. First we will claim that the Lemma
2.3 is equivalent to the following statements.

(4) Letnbe anon-negative integer, A1, -, A, be elements of M, and By,---,B,
elements of K. Assume A,,---,A,, are K-linearly independent and

lel +"'+Bn}\4n = ;\fn+1-

Then By,---, B, are all in k.
(5) The natural map M ®; K — €, which extends the injection from M to €, is
still injective.
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Let (W;)ier be a basis of the k-vector space M, and let (;) jes be a basis of the
k-vector space in M, and let (7y;) jes be a basis of the k-vector space K. Then 1; ®;
(iel,jelJ) is abasis of M ®; K over k:

MK = {Zu,’@) Bi; Bi € K with supp(Bl’)igl ﬁnite}

iel

= {ZM@YJ; Aj € M with supp(A;) jes ﬁnite}

jeJ

= {Z Zcijui‘gvj; Cjj € k with supp(cij),-g"jej ﬁnite}

iel jeJ

where finite support means that all but finitely many elements vanish.
The map M ®; K — € is nothing but
DB — Y Wi, DAY — DA,
iel iel jeJ jeJ
as well as
22 G ®Yj > Y Y ik
iel jeJ iel jeJ
Proof. (1), (2), 3) = (4) Let BiA; +---+ByAy = Ayy1 € M. Now, S and T are
K-vector space, k-vector space (respectively) spanned by Aj,--+,A,. Put SN M =U.
Since T c U and Ay,---, A, are k-linearly independent, dimU > n. If Wy, Wy € U
are k-linearly independent then by the a) K-linearly independent and y,--, WL, € S.
So m < n. Consequently, dimU =n, U =T.
Also, A,y €U then Ay €T. So 3 ¢y,-++,¢, € k such that ¢cjAq +-+-+ ¢\, =
BiAi + -+ BuAy. But Aq,--+ A, are K-linearly independent then ¢; = B; for all i.
Therefore, f; € K.

(1) = (5). The map
M ® K — ¢ defined by ZH,‘@B,‘ — Z},LiB,‘
iel iel
If Z WiP; = 0 then L, is k-linearly independent, by the (1) K-linearly independent.
iel
So B; = 0 for all i. Therefore,
> uiepi=0
iel

Thus, this function is injective.

(4) = (1). Suppose that the set {A, -, A, } is k-linearly independent, but K-
linearly independent. Let n be a maximum number such that {A;,---,A,, } K-linearly
independent. Then n<m, 3 By, -+, B, € K such that BjA; + -+ B,A,; = Ay11. By the
(4), since By,-++,Bu €k, A1, -+, Ay, Apyq are k-linearly independent. Contradiction.

(5) = (3). Suppose that BjA; +--+ B Ay = 0 with By,--+, B, linearly indepen-
dent over k in K, and A;,--+,A, be k-linearly independent in M. Since (L;)es is a
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basis of the k-vector space M. Also, (Y;)jes be a basis of the k-vector space over
K. So,

A=Yl (1<j<m), Bi=>cijyy (1<i<m)

i€l jeJ

B]kl +"""Bm)\fm = chijui’Yj =0

iel jeJ

So,

By the (5), the map is still injective,
> cijhi®Y;=0.
iel jeJ
However, since [; ®; (i€, j€J) is a basis of M ®; K over k. So contradiction.
O

Lastly, we put k:=Q, M :=Q+ L and € := C. So we can get the desired result.

Baker’s theorem means: The injection of Q + £ into C extends to an injection of
(Q+L)®gQ into C. The image is the Q-vector space L c C spanned by 1 and L:
(Q+L)®gQ=L.

!
L= {Bo+25h10g0€h :120,00¢Q",B 9@}
h=1

It will be convenient to show that several statements are equivalent to Baker’s
homogeneous Theorem 1.8. As pointed out by J-P. Serre in his Bourbaki lecture on
Baker’s work, it means that the natural map from the tensor product (Q+ L) ®@@
in C, which extends the injection from Q+ L to C, is still injective.
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