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THE CONTINUUM HYPOTHESIS

SIMON DAVIS

ABSTRACT. Power sets of generalized natural numbers are sufficient to prove
that cardinality of 2V and the real numbers coincide. The cardinality of geo-
metric sets is combined with inequality on the measures of curves in a planar
domain to prove the equivalence of the cardinalities R, n > 3, with Ng. A set
C is defined to be the set of real numbers with a decimal expansion such that
the nt" place can be evaluated after a countably infinite number of arithmetic
operations. A projection from the set of real numbers to C exists. The cardi-
nality of C is demonstrated to be N%, which must be equated with cardinality
of the continuum. It is proven that there is no other cardinality between Rg
and 20,

MSC: 03E50, 54A25, 57N16

1. Introduction

The continuum hypothesis concerns the existence of sets with cardinality between
Ro, that of the natural numbers, and 280, the cardinality of the real numbers. It
may be recalled that the set of rational numbers can be placed in one-to-one corre-
spondence with N. Since the real numbers may be defined by the limiting values of
convergent Cauchy sequences of rational numbers, the continuum hypothesis would
be valid if there do not exist any sets with a cardinality greater than card(Q) and
less than card(R).

It may be demonstrated that geometry distinguishes between sets of equal car-
dinality. Furthermore, a combination of analytic and geometric methods can yield
relations between cardinalities. The ideal boundaries of Riemann surfaces. for ex-
ample, are known to be described by a countable collection of points, a Cantor sets
of ends or a continuum. The comparison between the cardinalities of countable and
Cantor sets then may be refined through geometrical models such as the categories
of ideal boundaries of Riemann surfaces.

The characterization of Riemann surfaces of by the ideal boundaries is given
by the limit lim, .o, = oo on the Cantor set E(pipaps...), where the unit in-
terval is divided into p, equal segments and the central interval is deleted, and
T is the Robin constant of F(pips...p,) that equals the inverse of the capacity.

log py

Two conditions that can be satisfied by the Cantor set are Y oo =5 = oo or
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e, (1 — 1%) = 0 [1]. While the first equation is not necessary, the second re-

lation is required for the capacity to be zero. These constraints cannot be satisfied
if p, = p for all v. The cardinality of the set satisfying the second condition is less
than or equal to card N = Xg. The latter estimate follows from the decrease in the
number of divisions of the subintervals in the sets E(p;...p,) for large v, and the
inclusion of sets of ends for finite v with v < v,,,44-

The relation between the quasiconformal extension of Riemann surfaces with
ideal boundaries having dimension between 0 and 1 and the continuum hypothesis
is elucidated. The set of values of the the harmonic dimension of the boundary,
equal to the cardinality of the set of minimal Martin boundary points, in the range
[1,2%], may be enumerated in a investigation of the validity of the continuum
hypothesis. [2]. The existence of surface with a set of ends of cardinality Nf with
n > 2 is demonstrated in §2. The equality of the cardinalities RZ and X%, n > 3, is
proven in §3. The cardinality of all real intervals is derived and found to be equal
to 2%. The equivalence of X2 and 2% in the binary decimal system is found to be
valid for the continuum.

2. Surfaces with Ideal boundaries of Non-zero Harmonic Measure

A relation between the continuum hypothesis and the classification of Riemann
surfaces has been conjectured through a proposed equality of the set of harmonic
dimensions of O¢ surfaces and a set of cardinalities between 1 and N [2]. The
set of cardinalities first can be determined for the open planar surfaces in C. It
is found that there is a bijective correspondence with nonempty compact subsets
of C and those that have zero logarithmic capacity or an Evans-Selberg potential
will belong to O¢g [3]. By the Picard principle for the Martin kernel, it follows
that dim (C) = card A,(C) = card K [2], where A;(R) is the minimal Martin
boundary of R. The cardinality of K can be deduced from the Cantor-Bendixson
Theorem, the K is a closed set in C and a union of a countable and a perfect set.
The Cantor-Bendixson theorem had been proven initially for closed sets in the real
line [4][5]. However, it can be extended to any separable completely metrizable
topological space, including C.

The only Riemann surfaces that can be conformally mapped to a planar region
are schlichtartig and have genus zero. However, it is proven that card A;(R) =
card A1 (Wg), where W is a Heins surface with a single boundary component. The
cohomology of a neighbourhood of this boundary component will be determined
by the boundary curves in the exhaustion of the surface and that neighbourhood
can be mapped to a planar region [6]. Therefore, the harmonic dimension of the
minimal Martin boundary will be equal to that of a planar region and the previous
results regarding the compact set representing the complement to the image of the
neighbourhood are relevant. The set of harmonic dimensions belonging to the class
of O¢ surfaces will not be larger than that for open planar surfaces, N U {Rg, X}.

The Heins problem also may be extended to the classes of surfaces between O¢
and Type II surfaces. The ideal boundaries, irrespective of the harmonic measure,
are represented by intermediate sets with cardinalities that would determine the
validity of the continuum hypothesis.

It remains to be determined if every transfinite ordinal between Xy and X can be
derived through this method, A bijective mapping between the transfinite ordinals
w, w+1,...,w+a, ... with a maximum cardinality of X and points sets in the real line
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is necessary. The completion of power sets of generalized natural numbers provides
a method for determining the relation if such sets are perfect.

Theorem 1. The cardinality of the set of ends of Toki’s surface is N3.
Proof.

The example of Toki’s surface in Oy p\Opp is constructed by letting
(2.1)
Ao =A\Up, Sy,
Sy ={z=re?| =27 <logr < 27D g —p.ox27H =1, . 2%

=220~ 1)}

and, denoting {X(h)}2°, {X'(h)}{° be two sequences of duplicates of ¥y, such that,
for fixed m =1,2,... and j = 0,1,..., i = 1,...,m, X(i + myj) is joined with ¥'(i +
m + mj) for even j and ¥'(i — m + mj) for odd j crossing along every slit S%,,
n =1,2,..., by passing to the covering surface [7]. The number of sheets is given by
summing over m and j to give 3, ., > 14375 odd >o>°_, 1 with a cardinality
equal to N3.
d
If the sheets are separated at each of the slits, with rejoining at the other side,
the ends of the surface would be related to each value of i given by n and v. When
n tends to infinity, u increases linearly for fixed n and the cardinality of the set of
ends then increases to

N
(2.2) LMy — oo Z 22n
p=2m—1(2n-1)
m,n=1

since 2™171(2n; — 1) = 2m271(2ny — 1) if and only if m; = ma and n; = ng,
The cardinality of the set defined by {u} remains Z. Therefore, the sum would be
22%0 A cardinality of 2% is larger than that of the real line and equal to that
of the sphere [8]. Since the boundary of the unit disk, which is a covering of any
Riemann surface of genus g > 2, only has the cardinality of the real line, it cannot
be possible to separate the ends of the sheets at each of the slits labelled by m, n
and v and preserve the topology of a differentiable manifold. The cardinality N2
must be compared to that of N, Xy, and 28, X = 2% This problem is raised also
by the evaluation of the cardinality of sets in planar domains.

3. Power Sets of the Generalized Natural Numbers
Consisting of Infinitesimals

Although the power set 2V generated by the natural numbers has the same car-
dinality as the real numbers, these two sets do not coincide. A generalization of
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the natural numbers is required for such an identification. In nonstandard analy-
sis, a generalized natural number is defined with the inclusion of infinitesimals [9].
The rules of arithmetic operations have been delineated for the generalized natural
numbers. The infinitesimals are necessary for a relation with R, because the set of
real numbers form a continuum. The power set based on N*, the set of generalized
natural numbers, will have the cardinality of R. Based on the formalism for the
integers and rationals, the cardinality of N* and a set of generalized rational num-
bers Q*, would be equal. The relation between 22" and R then may be considered
within the context of the Cauchy completion of Q into R.

Cardinality is fixed and defined consistently for each set, and yet, there is a
further delineation of the cardinality of subsets of a geometrical manifold. The set
of accumulation points of handles on the sphere is an example. The cardinality of
this set may be set equal to to a number less than or equal to 2% [?]. A surface
in this category can be modelled by a sphere with an infinite set of sequences of
handles accumulating at points with rational coordinates, which would require the
removal of the rational multiples of 27 for the longitudinal and latitudinal angles.

Theorem 2. The excision of points with rational coordinates with a fixed numer-
ators requires the removal of a set of cardinality of order 28card(Z)®? and replaced
by a semicircular arc of arbitarily infinitesimal radius such that the integral mea-
sure of the arcs at the k" stage of the development of the rectifiable path decreases
with k. Since the cardinality of the set of points on the arcs is greater than or equal
to the cardinality of the set of excised points, it must be a monotonic function of
k. Then the cardinality card(Z?) = RF for finite B > 3 may be equated with N3.

Proof.

Mapping the sphere to the plane, the unit circle will have rational values of x = %

ory=4/1-— Z—; that may be excised and replaced by semicircular arcs about these

points. These arcs actually subtend an angle larger than 7 because the endpoints
must be located on the original circle rather than a straight line. Let the radii obe
€1 such that

2
a\? 2 —a?

3.1 <__> _ve—emy 2

o o ()

22492 >1

on these semicircular paths. Then on each arc 7;,, there will a countably infinite
set of points that can be selected, for example, by the rationality of one of the
coordinates (z;,,¥;,). Labelling the points {(yi,, Yii, }» Where

(3‘2) (1‘ - xiOiI)Q + (y - yioil)z = 63
371201'1 + yiﬂl >(1+ 61)2

on the second class of arcs. A countably infinite sequence of semicircular arcs about
points with either rational = or y yields a rectifiable path. It can be verified that
at the k" stage, a set of points of cardinality 2¢card(Z)* is removed. Given that
the semicircular arcs would be described by

(3'3) (‘T - 1‘7?07314--731‘-,71)2 + (y - yil)il--~":k—1)2 = 6%
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the neighbourhoods of the excised rational points will be nonoverlapping if ), €, <
1. This upper bound will be achieved if the number of stages of the sequence is
finite or the magnitude |e;| decreases more rapidly than (5 L. Since the cardinality

of Q is Ny, the cardinality of the set of excised points Wthh approaches that of the
rectifiable curve is

B
(3.4) Z 2k card(Z¥) — card(Z) < 28 card(ZP)
=1

The value of B may be chosen to be arbitrarily large, and the limit of B tending to
infinite is majorized by 2%02%0 = 2280 gince card(Z)? < 2% for all finite B. Fur-
thermore, the sum of the lengths of the nonintersecting portions of the semicircles
at the k*" stage has the same order for each k, since it is a path between two circles
of radii 1 and 1+ ZIZ:I €, with a tangent having an everywhere positive derivative
in the direction of the traversal. Since the excised centers form sets of increasing
cardinality 2Fcard(ZF), the nonintersecting portions of the semicircular arces would
decrease at each successive stage. Yet, there continue to be sets of excised points,
and the union of these sets after B stages has a cardinality between 28card(Z?)
and 28+ card(Z5).

The ordering of the cardinalities X2, n > 2, depends on the equality of X3
with the cardinality of any set of real numbers represented in a dyadic expansion.
Irrespective of the uniqueness of the representation of real numbers by decimals of
arbitrary length, the cardinalities X3 and the cardinality of the real continuum may
be examined within the system of binary units. The approximation of real numbers
in this system by rational numbers in Q such that N card Q is identified with
card @ for finite N, while the limit of N tending to infinite yields card R, provides
an analytic method, separate from the Zermelo-Fraenkel axioms, for determining
the relation between the cardinalities X2 and 2%o.

Logical consistency then would be restored if and only if the cardinalities of
the set of excised points or the rectifiable curve are equated at each stage, since
card(ZF) > card(ZF=1). Therefore, the cardinality of Z* may be identified with X2
for all finite k. Since N2 can be designated to be the next cardinality beyond R,
there would be a maximum of one cardinality between Rg and 2%¢ [8].

It is evident that an enumeration of sets with cardinality less than or equal to
2% would be given by these rectifiable paths with cardinalities NOB for finite B.
The radii of the semicircles € tend to zero in the limit of B tending to oo, which,
therefore, cannot yield a conclusion regarding the relation between X2 and 2%°.

O

The cardinality of Z%, 2 < a < 3, can be equated with that of Z2. The fractional
exponent may be achieved by considering branching of the set of integers into
either two or three routes, with the average having a value between these two
integers. Then, there is a countable sequence of stages with one extra branch that
is embedded identified with another element of Z embedded in Z2.

The generalized continuum hypothesis implies the axiom of choice [11]. It is
not possible to posit the validity of this hypothesis in the proof. The axiom of
choice, however, is included in the ZFC axiomatic system, and it would sufficient to
conclude, for example, that the accumulation point of a subsequence of an infinite
sequence of rational numbers is a real number. Conversely, every real number is
represented as an equivalence class of a convergent sequence of rational numbers.

The cardinality of the set of ends of Toki’s surface does not introduce an inter-
mediate value because it can be identified with 3. The existence of a conformal
conjugation of a Type I surface to a Type II surface [12], with a boundary of
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non-zero linear measure, is indicative of an equivalence between the cardinality
of the sets of ideal boundaries points of Type I surfaces not in Og, greater than
card 7. = Xy, and 2%0,

Theorem 3. There can exist real numbers with an expansion such that the n**
decimal place cannot be evaluated in a countable number of arithmetic operations
over Q. There is a projection from these numbers to numbers that belong to the
set C of countably infinite algorithmic computable real numbers which preserves
its cardinality. The cardinality of C can be proven to be N2, and it may be equated
with card(R), which thereby verifies the continuum hypothesis.

Proof.

The decimal representation characterizes the real numbers as the Cauchy equiv-
alence classes of rational numbers such that a countable number of arithmetical
operations over Q is required to define a real number. A transcendental number
such as 7 is given by an infinite series over Q, since its decimal representation
can be found after a finite number of arithmetic operations [13]. The n'* decimal
place of many transcendental numbers may be given after a countable number of
arithmetic operations. The evaluation of a number such as 72, with 7y and 7
being independent transcendental numbers over A that may be computed to the
nt" decimal place after a countably infinite arithmetic calculation, would require
initially an algorithm with uncountable number of arithmetic operations over Q.
Suppose that

o0

ai
(35) T = -
qn
n=0
o]
_ a2n
T2 = -
n=0 q

such that a countably infinite algorithm is required to evaluate the coefficients
a1n, G2y for each finite n. Then

a2n

o'} a EZO:O qn
(3.6) = (Z ﬂ)

q"
n=0
221 22k

< > a ) : < > a/ ) < > a Qk
n=0 q" n=0 q" n=0 q"

The uncountably infinite number of arithmetical operations over Q in addition to
the q%h root necessary to determine the decimal expansion of 772, however, can be
reduced to a countably infinite algorithm to evaluate the nt* decimal place. It may
be recalled that 7 and 75 belong to the class of transcendental numbers such that
a countable number of steps are sufficient to find the n** decimal places, and

p1 C1
(3.7) ’Tl 0% | (10N e
’ D2 < C2
T2 10No (10No)r(tau2)

with r(7) being the Lioville-Roth constant or 7. Suppose that 73 > 1. Then 772 is

a monotonically increasing function of 75 and Tlmj <1< TI{TZ}. Given that 7
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n o

is not equal to the where « is an algebraic number, 72 is a transcendental

In 71
number and
r P12 C12 C12
3.8) 270N | (10Noyr G = (1002

as r(772) > 2*. Furthermore,

. (2] _
A= ()| = - | (L) + D et
C1 o | —
(3.9) < W(LDJJFU(THNOL =
- pr {72!} c1 ol
- (10%) < [10M0)rm ({r} + D(m +e)t™I 0
where €¢; < (I()Ngﬁ The function |72 — < (11871% )7'2 is a montonically increasing

function of 5 and

(3.10)

C1 T |— P p1 \™ C1 ol
W(L@JH)(T&“)L S (10No) = (10No)r<n)({TZ}H)(“JFQ){ ol
Since 7(11) > 27,

(1)
. P1 \™? Ci2
(311) 7'1 - (10N0> < 102—]\]0.
Similarly,
(3.12)

( P1 )T27< 2} )%
10N 10M0

2
T2 1 T2
=|(1+ + = + ...
'( In (3t#s) 2!<ln(1§—bo)) )
_(1+1gi+l<1gi)2+ )‘
n () 2 \In (F%))

_ P2
< 727 10N n 1 - D2 2(m2 + €9)?
L S S . .
G BT I0% ] ()
%) m
-2y Ly Tte)
0% | o= ml \In (f#5)
To+¢€)
- P2 | Ty + €2) o (ﬁ)
10 | In (1(1))11%)
ve) ()
C2 T2 €9 in (Pl
< 10No
(0% T i (i) ©
2
052)
102N0'
with ey < m' Therefore,
2 (1) (2)
T2 D1 )10N0 Ci9 Cio  C12
(8.13) n (10No 1028 1028~ 102N

with ci2 = c§12) + cg). A similar inequality is valid when 71 < 1.
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A countably infinite number of arithmetic operations would be required to com-

pute the expansions of 71, 72 and 7;° to the N{" decimal place. Since 2Ny > Ng+1
P2

for a finite integer Ny > 2 and (lg}vo ) 10M may be evaluated in a finite number of
steps, only a countably infinite algorithm is necessary for calculate 772 to Ny + 1
decimal places. By induction, the n'* decimal place of 712 for any finite n can be
evaluated after a countably infinite number of arithmetical operations.

There is a surjection from the set of Godel numbers to the finitely algorithmic
computable real numbers C, evaluated to a given precision after a finite number of
arithmetical operations and forming a subfield of the real numbers, although the
surjective function from N to C is not computable [14]{15]. This class of numbers
could be considered to be separate from numbers of the type 772, since an infinite
number of operations is required for an evaluation of the n!* decimal place. The
class of countably infinite algorithmic computable real numbers, to be denoted C,
would be defined by the computability of the n!* decimal place in their decimal
representations in a countable number of arithmetic operations. This set is larger
than the set of finitely algorithmic computTablc real numbers, which has cardinality
Rg. The transcendental numbers 742, 7'17237 ... represent the set which maximize
the length of the algorithm for their computation. Consequently, any real number
would belong to C. The projection from the set of real numbers to C does not alter
this cardinality.

The relation between the number of arithmetical operations to evaluate the dec-
imal expansions of elements in C and the cardinality of this set remains to be
established. When a finite algorithm is sufficient to find n** decimal place in a
finite expansion, the number in the set of finite algorithmic computable real num-
bers, C, can be given after a finite number of steps. If only finite, arbitrarily large
decimal expansions are enumerated, the set C would have cardinality Xy. By anal-
ogy, for a countably infinite algorithmic computable real number, the number of
arithmetic calculations for a finite decimal expansion is countable. Enumerating
the elements by altering each of the decimal places in an arbitrarily large expan-
sion, the cardinality of this set, C, now would be equated with X2. By Theorem 3,

N2 = card(C) = card(R) = 2%, and the continuum hypothesis is proven.

O
It is evident that this theorem confirms the cardinality of 28° for uncountable
projective sets given the validity of the Axiom of Projective Determinacy [16]. The
infinite-genus surface is an example of a noncompact, first countable, countably
compact space which contains a closed subset homeomorphic to w; with a natural
order topology [17]. The condition on countability of the meager open set union
representing a compact subset is satisfied, and projective determinancy is valid [18].
The rules of cardinal arithmetic indicatae that the cardinality of the union of
two sets of cardinalities @ and 8 can be equated to maz(a,3). With regard to
the product, the selection of the set is critical in the validity of any statement.
The decimal representation of a number on the real line consists of an integer part
belonging to a set of cardinality ¥y and a decimal expansion in a set of cardinality
N3. Since the second cardinality does enumerate the decimal expansions to an
infinite number of places of every real number, it is considered not to be necessary
to multiply the two cardinalities Xg and R2 to establish the cardinality of the real
line, because the cardinality of the continuum is already given by that of the unit
interval [0, 1], which would be determined by the decimal expansions. It may be
noted, however, that the cardinality of the product of sets with a countably infinite
number of elements never can be identified with the maximal of the cardinalities of
each of the sets, and RgRy = Ng is distinguished in set theory from V.
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The value of a real number would be unique with a difference of zero to an infi-
nite number of decimal places. The existence of an alternative numbering method
for real numbers yields a logical contradiction. Suppose that one could continue
the decimal expansion of a real number beyond Rg places to N2 places. If this con-
tinuation is hypothesized to be countable, then the decimal expansion again would
represent an exact representation of any real number. Further, if this expansion
is continued again to N{, n> 3, a similar result occurs. Therefore, the only way
of achieving an ambiguity in the real numbers would be the possibility of an un-
countable decimala expansion. However, it must then be concluded that there is
an intermediate cardinality R§ of an uncountable set. If Rf is uncountable, all of
the previous powers of 8y would be countably equivalent to Xy. Identifying these
cardinalities with N, the diagonal rectangular array for Q may be used to define
the next power of Ng, which is 2. Therefore, k can be set equal to 2. Then, N2
must be a cardinality different from Xy.

From the above discussion, a characterization of the real line by a product of
sets of cardinalities Rp and RZ logically might be interpreted as a set of cardinality
NZ. The standard decimal expansion is sufficient to characterize the real line since
the difference between adjoining elements can be reduced to zero within a fraction
with a denominator raised to a Liouville-Roth constant tending to infinity. An
uncountable decimal expansion would yield differences that are not measurable, and
its extent would equal a fraction of the number r less than NL(, = 0. Consequently,
the initial decimal expansion provides a representation of real numbers, and any
logical exceptions no longer exist. With a countable decimal expansion, 83 covers
an entire interval within the real number line. The conventional majorization of the
power N% by 2V for K < Nll: ]%,, and conversely 2V by N™ where M > Nlls—]%,,
is valid for finite N. Since M — oo, when N — oo, this majorization will is
indicative of sets of cardinality N being finitely comparable and yet isomorphic to
proper subsets having cardinality 2%°, which is conventionally interpreted as the
cardinality of the continuum. Nevertheless, the unit interval is not strictly covered
by the Cantor set, and a union of these sets is required. Therefore, to avoid an
inconsistency, X2, X% and 2% all must be defined to be cardinals that represent the
real continuum. From the above discussion, a characterization of the entire real line
by a product of sets of cardinalities Ny and X3 logically might be interpreted as a set
of cardinality NoRZ = N3. However, given that both the unit interval and the real
line are examples of the continuum, X3 and N4, n > 3, are comparable cardinalities.
The categorical equivalence of X3 and 2% follows from the characterization of the

set C of real numbers with an n'* decimal place that can be evaluated with a
countably infinite algorithm for all finite n.

4. The Decidability of Propositions

The existence of a statement of the validity of a proposition and its negation
would be sufficient to demonstrate the inconsistency of a two-valued logical system.
An axiomatic system satisfying the Zermelo-Fraenkel axioms and the continuum hy-
pothesis would remain consistent [19]. The independence of the continuum hypoth-
esis from these axioms follows from consistency even with its negation [20][21]. The
continuum hypothesis nevertheless represents an example of a proposition which
could be proven in a logical system that includes the Zermelo-Fraenkel axioms and
the axiom of choice [22]. Given the independence of the continuum hypothesis from
the ZFC axioms, the identification of the cardinalities 82 and R; cannot be proven
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from this axiomatic system. By contrast, the equality of of XF, B > 3, with 82, and
and the representation of real numbers by a set of cardinality N3, distinguishes the
geometrical formulation of the completion of the rational numbers into R, that does
not introduce paradoxes related to certain ZFC axioms, since sets of cardinality N
do not occur in the proof of Theorem 2.

The possibility of circumventing the undecidability of certain propositions in an
axiomatic system, following Godel’s theorem [23], may be investigated through the
introduction of a many-valued logic system characteristic of quantum theory. The
description of quantum mechanics through wavefunctions that have a squared ab-
solute value equal to the probability yields the prediction that there exist outcomes
of experiments that occur with relative frequencies that are fractional. Statements
about the truth or falsity of a physical property would be replaced by propositions
on both possibilities being valid a priori.

A proposition stating the truth and falsity of a conjecture about a single outcome
remains inconsistent. However, by the predicate calculus in two-valued logic, these
propositions could be cast in the form of negations. Propositions in the many-
valued logical system [24], which are allowed to have negative sentences, may be
formally consistent, by contrast with two-valued logic.

The Riemann surfaces constitute a geometrical representation of a consistent
quantum theory. The handles cause a bifurcation in the position coordinates of the
string coordinate wavefunction. Surfaces with a set of ends of cardinality Ng, n > 2,
could be regarded as a manifestation of a logical system with n possible results. The
equivalence of the cardinalities Rf, n > 2, would be sufficient to restore consistency
to the the defining set of axioms.

5. Conclusion

The continuum hypothesis is central to axiomatic set theory. The incompleteness
of the propositional calculus of a logical system is evident in the absence of a proof
of the continuum hypothesis.

A careful study of the cardinality of geometric sets reveals that geometry distin-
guishes between set theoretic equivalence of cardinalities. It may be demonstrated,
for example, that the cardinality of the set of points on the sphere S™ equals 2™0.
The distinction between manifolds is reflected in an ordering of the cardinalities.
Space-filling Peano curves would appear to represent an intermediate geometric
construct between a curve of cardinality 2% and a planar domain of cardinality
221‘20'

A similar conclusion is reached for Riemann surfaces. The enumeration of the
harmonic dimensions of the ideal boundary of a surface in the class Og can be
reformulated as the counting of accumulation points of handles on a sphere. A
countable number of handles would be consistent with the vanishing of the harmonic
measure of the ideal boundary. When the cardinality of the set of ends equals 20,
the Riemann surface can be transformed to a fundamental region to a border arc
representing a continuum for the ideal boundary. There is a large set of Riemann
surfaces, however, that belong to the classes between Og and Type II. The class
Ogp includes Toki’s surface, which has a set of ends of cardinality N2 in the range
[Rg, 28], which is the next cardinality above Ny and N2, n > 2, is a cardinality
that may be identified with N2. The geometric sets of Theorem 2, defined by the
removal of points with rational coordinates on sequences of semicircular arcs, have
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cardinalities equal to NF, B > 3m which must be identified with N2. There is a
maximum of one cardinality between Ng and 2%°.

Various degrees of computability of subsets of real numbers have a connection
with their cardinalities. The set C is defined to be the real numbers such that their
representation can be computed such that the n'" decimal place may be found
through a countably infinite algorithm. This set consists of many transcendental
numbers. Given two elements 7, 75 € C, the number of arithmetical operations re-
quired for the evaluation the n” decimal place of initially would be hypothesized to
be uncountable. The distance from 77 to a rational power of a rational power may
be bounded, however, and, by the principle of induction, it may be demonstrated
that only a countably infinite number of steps are necessary to calculate the n'®
decimal place. Since sequences of transcendental powers of transcendental numbers
are the most complex to compute, this result would be valid for all real numbers.
There is a projection from R to C, which may be regarded as an isomorphism. By
considering finite decimal expansions, and then letting the lengths tend to infinity,
it may be established that the cardinality of C is N2. The equality of the cardi-
nalities of C and R follows from the isomorphism between the two sets. All of the
cardinalities of the form N%, n > 2, can be identified with 2%. The upper of lower
limits for 2V in terms of powers of N, for every positive integer N greater than or
equal to 2, prevents the existence of any cardinalities between {Xy, n =2, 3, 4, ...}
and 2%, and the validity of the continuum hypothesis is established.
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