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1 Introduction

Recently, summability theory plays a significant role to study area of Fourier anal-
ysis, Wavelet analysis, Fixed point theory and many other fields . The degree of
approximation of error of functions belonging to various classes have been deter-
mined by various investigators. Recently, , Lal and Kushwaha [11], Nigam and
Sharma([5]&[6]), Kushwaha etal [9]. Kushwaha and Vishwakarma [8] and many
others are work in this direction of approximation by product summability method
of Fourier series. Devaiya and Srivastava [13] and Sonker and Sangwan [12] have
determined the approximation of error of function of different type of product means
of Fourier series and its conjugate.

Now working in this direction, we have determined the degree of approximation of
function by (E,I)(E,1)(C,1) triple product summability method of series. There-
fore, this result will be useful for researchers in future.

2 Definition and Notations

o0
Let > u, be a given infinite series with sequence of its v*" partial sum {s,}.

v=0
Let {le} denote the sequence of (F,l) = E% means of the sequence {s,}. If the
(E,1) transform of {s,} is defined as

1 ! i
E . _ —v
in (C,J)) = m VEZO <l/> " Vs, - s as n — o0 (21)

oo
Then the series > u, is said to be summable to the number s by (F,l) method.

v=0
(Hardy)
Let {le} denote the sequence of (C,1) = C, mean of the sequence {s,}.
If the (C,1) transform of {s,} is defined as

n
G (g;x):#ZSV(C;x)—)S as 1 — 0o (22)
v=0

o0
Then the series > u, is said to be summable to the number 's’ by the (C, 1) method.

v=0
(Cesaro)
Thus if (E,!) transform of (C,1) transform defines (E,{) (C,1) transformation and
denoted by E,ZICU1 then if

s L (M 1§
Q7c (C%x)wzo(y>l" (77-1-1)};8}1%5 as 1 — 00 (2.3)
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where Qflcl denotes the sequence of E;Cy means that is (F,1)(C, 1) product means
of the sequence {s,}.

o0
Then the series > u, is said to be summable to the number s’ by the (E,1)(C,1)

v=0

method.
Now again if (E,[) transformation of (E,[)(C,1) transformation defines
(E,1)(E,1)(C,1) transformation and denoted by E%E%C% then if

lvh

1+l”2(> (1+1)” Z<l/)(h+1 Zsk%sasﬁ*%@‘l)

where QnElElcl denotes the sequence of EjE;C) means that is (E,[)(E,[)(C, 1) prod-
uct means of the sequence {s,}.
o0

QElElcl (C .%'

Then the series > w, is said to be summable to the number ’s’ by the

v=0
(E,1)(E,1)(C,1) method.
Let x(z) be 27- periodic, Lebesgue integrable function on [—m, 7] then its Fourier
series associated with a point x is defined by

1 : -
x(z) = 340 + Zl (ay cosvx + b, sinve) = ZOAV, veN (2.5)

is called the Fourier series with v*" partial sum s, (x;z).
The conjugate series of Fourier series (5) is given by

x(x) = (an sinnz — b, cosnx) = Z B,, veN (2.6)
k=1

We use following notations throughout the paper
Xa(t) x(z+1) +x(z —t) = 2x(t)
— 1
Xot) = S ix(@+t) —x(@-1)}

we also write

! n\ 1" & (v P h sin(k + 1/2)t
) = 50 +l 2r (1L +1)7 ; K) 1+ & <h> (h+1) {kX_; sint/2 27)
_ u N\ "7 &K v\ " h cos(k +1/2)t
on(t) = (1 —|—l ; [(1/) 141 = (h) (h+1) {kzo sint/2 }} (28)

and L,-norm is defined by

1/r

Il = ( / " x(af)lrd:r> L e

and the estimation of errors which is known as degree of approximation of a function
¢ given by Zygmund .

En(x) = mm||An(z) = x(@)|lr
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where A, (z) is some nt" degree trigonometric polynomial. This method of approx-
imation is called the trigonometric Fourier Approximation.
A function x € Lip « if

Ix(z+1t)— x(@)|=0(t|]*) for 0<a<1,t>0

and the function x € Lip(a,r) if

2m 1/r
(/ [x(x+t) — X(a})|rdm) =0(t]*) for 0<a<1,t>0.
0

Given a positive increasing function ((¢) and an integer r > 1, x € Lip{((¢),r}.
1/r

(/ 7 x4 1) - a)lds) = 0few)

If ¢(t) = ¢* then Lip(¢(t),r) class coincides with the Lip(a,r) class and if r — oo
then Lip(a,r) class reduces to Lip a class.
A function x € W(L",{(t)) if

1/r

27
(/0 Ix(z+1t) — x(z)|" sin'g’"(t/2)dx) =0{¢®)}, B8>0, r>1, t>0.

where x(¢) is increasing function of t.
we observe that

Lipa: C Lip (a,7) C Lip (¢(t),r) CW (L",¢(t)) for O0<a<l1l, r>1.

3 Main Theorems

The aim of this study is to generalize the theorem of Saxena and Prabhakar [10],
Devaiya and Srivastva [13], Sonker and Sangwan [12].

Theorem 3.1: Let {p,} is positive sequence which is monotonic and non-increasing
with real constants.

n
P,,:pr—>oo as 7 — 00

w=0

If x satisfy the condition as below

t
t
x(t) = [ Ix(u)ldu=o {
O/ 507

Provided S is positive, non-increasing and monotonic function of ¢

as  t—0 (3.1)

logn=0[{B(m)}.Py], as n—o0 (3.2)
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the approximation of function at x = t using triple product means of its Fourier
series is given by

1 1 1
‘QSJ O Xx(l“)‘ = 0(1) as N — 00
Theorem 3.2: Let {p,} is positive sequence which is monotonic and non-increasing
with real constants.
n
P, = Z Pw — 00 as 7 — 00
w=0

If X satisfy the conditions as below
t

X(t) = / (@)l = o0

0

as t—0 (3.3)

t
B(3) P
Provided g is positive, non-increasing and monotonic function of ¢

logn=0[{B(m)}.Py], a n—o0 (3.4)

then approximation of the function at x = ¢ using triple product mean is given by

I ELCT _
QF-EC —xa(x)] = 0(1) as n— 00
Where QE'F'C" denotes (E,1)(E, 1)(C, 1) transform of partial sums of the series (2.6)
4 Lemma

For proving the main theorems the significant lemmas are as given below.

Lemma 4.1 |k,(t)| =0(n) for 0<t< %; sinnt < nsinnt

proof 4.1:

w0l = s o | ) v 25 (v (S|
= 27r(11+ L Vz::) (D (1l7:)u hio (Z) ilz:hl {kzio = Jrsiln);/i;(tm H
< s |(Odrr s (a2
= 2#(11+ OE io (Z) (117:)” ,;0 (Z) (Ii:hl) (h+1)(h+1)
< 27r(11+ n yzi% (Z) (1l7:;)y hio <Z> (2h+1)
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Similarly |Ja] = O(—)

1
therefore || = O<> (4.1)

5 Proof of Theorems

Proof 3.1 According to Titchmarsh [3] Let s,(x; ) is partial sum of Fourier series

sin(n 4+ 1/2)t

sin(ij2)

sn(G2) — x@)] = — [x@®)

27
0
The (E,1)(E,1)(C,1) transform of s, (x;x) is given by

v
Lglot
QTJ;EEC — Xz(T)

h=0

s
— [ bl ngfe) e
0
By using the assumptions of Theorem, it is to be shown that

77 — OO

[e@lm@ld = o) as
0

- mio [@ i (i 0/ o {én(%/gmt

11

}dt

| IS |
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we set the limit of 4 from 0 to 7

/ X(t)] [r (1) dt

111
QFFIC — y(a)|

1/n
- /Ix(t|+/|xt)l+/\x(t (1)
1/n
= L+L+13 (say) (5.1)

Using second mean value theorem in second Integral using Lemma 4.1, equation
(3.1)& (3.2), we have

1/n 1/n

O/ X(®) g ()] dt = O(n) 0/ x(®)ldt| = o) [{ﬁmm}]

_o{P;()} 0{10;7}0(1) as  m— oo (5.2)

using Lemma 4.2 equations (3.1) and (3.2) we have,

)| k(1) dt = O / a(®)] (%) it

| 11]

IN

IA
—

=

=<

|12

Putting % = u in second term

- ol o} [ )
- ol )

1/~
1Cg}

(i} o

= 01 as n— 0 (5.3)
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By considering summability Regularity condition and taking Riemann-Lebesgue
Theorem

Bl < [ KOlkld=00)  as g0 (5.4)

collecting equations (5.2) (5.3) and (5.4) we get

‘QEZEZCI — Xx(fﬂ)‘ = 0(1) as 1 — 00.
Proof 3.2

On using Riemann-Lebesgue Theorem and according to Lal [11], Let §, (x; ) be
partial sum of the series (2.2)

0

sin(t/2)

or Fy(x;x)— —21 /cot(t/Q)X / (t) Cozlnn;;2)) dt
0
or F(Gz) — —% / cot £/2%()dt — % / cot(t/2)T(t)dt
0

n

7 _ cos (n+ )
/*/*/ O Gne)
0 % ¥
T 7 COSs 1
5(GT) - —% / cot(t/2)%(t)dt :% / {%—cottﬂ ()t
0

1
n

n

taking (E,1)(E,1)(C,1) transform, we get

S = v v=h h
Q{?E’lex(x)’ = HMZ <>1+l Z<Z)h+1/2A
0
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. L\t cost/2 ] . 1 ™ « 1
where, A — /(cos(n—f—z)t cost/ )+/cos(n+2)t+/ cos(n+3)t ()t
¥

sint/2 sint/2 sint/2

m

I
\
>
=
?

S
E
~
+

2 —

?
?

S

E
IS

= O()+Li+ Ly (say) (5.5)

1/n 1

¥ v
1 1
= 0 —_— — | d
”{aﬂ(%)}wié 0<pt.tﬂ (%)) t

on putting % = u in second term,

0{ } {(P uBU)>
oAt rolmmmm ),

O{lo;n}+0{1o;n}zo(1) as o0 (5.6)

using regularity condition in method of summability and Riemann-Lebesgue Theo-
rem, we have

Yy Y
1
ol < [Wmla=o]| [ ia|=o { } /—zxdt
y t 1/n ¢
n

L] < / X [Fn®)]dt=0(1)  as 15— o0 (5.7)

Collecting equations (5.5),(5.6) and (5.7) we have

‘QEZEZCI - X(z)‘ = 0(1) as N — o0

6 Corollaries

Some Corollary are given, which are derived from Theorems
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Corollary 6.1. If we take [ = 1 in Theorem (3.1), then triple product summa-
bility (E,1)(E,1)(C,1) reduce to (E,1)(E,1)(C, 1), then
|QnElE1C1—X(x)| = 0(), as n—

Corollary 6.2. If we take [ = 1 and (C,1) = 1 in Theorem (3.1), then triple
product summability (E,1)(E,1)(C,1) reduce to (E,1)(E,1), then

’QUElEl—X(x)‘ = 0O(1), as n—oo

Corollary 6.3. If we take [ = 1 in Theorem (3.2), then triple product summability
(E,)(E,1)(C,1) reduce to (F,1)(E,1)(C,1), then

‘QflElley(x)‘ = 0(), as n—

Corollary 6.4. If we take [ = 1 and (C,1) = 1 in Theorem (3.2) then triple
summability (E,1)(E,1)(C,1) reduce to (E,1)(E,1), then

QF P —x(@)| = o), as 5o

7 Conclusion

In this paper, we have estimated degree of approximation by using double Euler
product of Ceséro means which becomes (E,1)(E,1)(C, 1) triple product mean. This
result is new one which generalizes several results known in this field. Therefore, it
will be very useful for new researchers in comming days.
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