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MAXIMAL NORMAL SUBGROUP IN THE KERNEL
OF A PSEUDOCHARACTER ON A GROUP

A. 1. SHTERN

ABSTRACT. We define an object which turns out to be the maximal normal

subgroup in the kernel of a pseudocharacter on a group.

§ 1. INTRODUCTION

In this note, we introduce an object which turns out to be the maximal
normal subgroup in the kernel of a pseudocharacter on a group. For the
generalities concerning pseudocharacters, see [1-4]. See also [5] for some
applications of the maximal normal subgroup in the kernel of a pseudochar-
acter.

§ 2. PRELIMINARIES

Lemma. Let G be a group, let N be a normal subgroup of G, and let w be
the canonical epimorphism of G onto G/N. If a pseudocharacter f on G
(such that f(gh) — f(g) — f(h)| < ¢ for g,h € G) vanishes on N, then there
exists a pseudocharacter ¢ on the group G/N such that f =Y op. If G is a
topological group, N 1is closed, and f is continuous, then ¢ is continuous.

Proof. Let GG be a group, let N be a normal subgroup of G, let g € G, n € N,
and let f be a pseudocharacter on GG vanishing on N. Let m € N. Then

m|f(gn)—=f(9)l = 1f(gn)™)=mf ()| = F(g™( [] ¢ *ng"m)—flg™)|<c,

k=m—1
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since

1

( I[ o Fng*nen;

k=m—1
this implies that f(gn) = f(g) for all n € N and all ¢ € G. This means
that f is constant on every coset of N in G. Define a real-valued function ¢
on G/N by setting p(gN) = f(g) (since f is constant on the cosets of N, it
follows that this definition is correct). The above formula for m|f(gn)— f(g)],
g € G, n € N, together with a similar formula for

[f(gn)™™) = f(g)™ ™|,

shows that ¢ is a pseudocharacter on G/N, and that ¢ = v o 7, where 7
is the canonical epimorphism of G onto G/N. The continuity assertion for
topological groups follows immediately from the last formula.

& 3. MAIN RESULT

Theorem. Let G be a group, let f be a pseudocharacter on GG, and let N =
ker f, i.e., N={ge€ G: f(g) =0}. Let

M ={u€kerf| f(gu) = f(g) for all g € G}.
Then the following assertions hold:

(1) M~ c M;

(2) f(ug) = f(g) for alluw € M and all g € G}

(3) M contains the products of its elements, i.e., f(ujuz) = 0 and f(guiug) =
f(g) for every uy,us € M and all g € G;

(4) M is invariant under the inner automorphisms of G

(5) M is a normal subgroup of G.

Proof. (1)
flg) = flgu'u) = flgu™)

for every u € M and all g € G, which implies that u=! € M for all u € M.
(2) Let g € G and u € M. Then

f(g) = flugu™") = f(ug)

by (1). Therefore, f(ug) = f(g) for all u € M and all g € G.
(3)
f(g(uruz)) = f(gu1) = f(g)
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for all g € G and all uy,us € M.
(4) Let g,h € G and uw € M. Then

f(ghuh™) = f(hh~tghh™*huh™') = f(hh~*ghuh™") = f(h~'ghu)
= f(h™'gh) = f(9).

(5) M contains the inverses (1) and products (3) and is inner invariant

(4)

This completes the proof of the theorem.

§ 4. DISCUSSION

Since, for every normal subgroup N C ker f, we have f(gu) = f(g) for
every g € G and all n € N, it follows that N C M for every normal subgroup
N C ker f. This immediately implies the following assertion.

Corollary. Let G be a group, f a pseudocharacter on G. The normal sub-
group M is the maximal normal subgroup contained in kerf.

It is of interest to find conditions under which the above pseudocharacter
p on G/M (see the lemma) has trivial kernel.
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