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ON THE CONSTRUCTION AND PROPERTIES OF
FRAMES USING INCIDENCE MATRIX OF GRAPHS
AND THEIR SPECTRA

A. SENTHIL THILAK', AYYANAR K2, AND P. SAM JOHNSON?

ABSTRACT. Frames are considered to be redundant counterparts of bases for vec-
tor spaces. This redundant structure favours frames to be rich in both theory and
applications. In recent studies on frames, graph theory is one of the significant
tools to analyze the properties of different types of frames. In graph theory, we
associate a graph with different types of matrices, of which signless Laplacian
matrix contributes significantly in exploring the properties of a graph. In this
paper, given a graph G, we propose a method to construct a frame from its in-
cidence matrix such that its frame graph is the line graph of a derived graph of
G. We analyze various properties of the frame constructed as above, its dual, etc.
Further, we investigate the existence of frames with constrained frame bounds,
using the properties of the associated graph and its signless Laplacian spectrum.
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1. INTRODUCTION

In a finite-dimensional Hilbert space H, a finite sequence of vectors ¢ is a frame
if and only if ¢ spans H. Research on frame theory was initiated by Duffin and
Schaeffer in 1952, in their study on non-harmonic Fourier series [6]. In recent years,
frames in finite-dimensional spaces have received much attention from both pure
and applied mathematics, as they possess a rich redundant structure when com-
pared to bases for vector spaces. Frames are considered to be more general than
orthonormal bases (ONB), yet retain most of the significant properties of ONBs.
Further, each vector in a Hilbert space H can have more than one representation
as a linear combination of elements in a frame for H. Most real-life applications
demand such flexible structures. For instance, based on the fact that each vector in
a vector space has a unique representation as a linear combination of its basis ele-
ments, while transmitting sensitive information (as signals) across a communication
channel, each signal is treated as a vector in a vector space and is encoded using
the coefficients in its representation as a linear combination of basis elements. The
signals thus transmitted are decoded easily using dot products of suitable vectors
at the receiving end. This results in efficient and secured transmission of informa-
tion. However, if one of the coefficients is lost during transmission, then it is not
possible to decode or retrieve that particular segment of information. This problem
is overcome with the help of redundancy in a frame structure. A frame being a
spanning set (not necessarily independent) helps in the successful retrieval of in-
formation, even if a piece of information is lost during transmission. Perhaps, the
orthogonality and linear independence conditions on an ONB restrict its usage in
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most of the applications and this limitation is overcome with the help of frames. For
basic notions and terminologies in frame theory, the reader may refer to [8]. Of the
several studies on frames, the recent approaches relating to frame theory and graph
theory have paved a new research avenue for many researchers. For basic notions
and terminologies in graph theory, the reader may refer to [14]. Graph Theory is
used as a significant tool to study the problems arising in frame theory and vice
versa. Some of the significant relations that exist between frames and graphs are
discussed in [1, 3, 7, 9, 11, 12, 13]. Particularly, in [1], the authors associate a graph
to a frame as follows: Given a frame ¢, a graph G(¢@) is associated with ¢ by consid-
ering each element of ¢ as a verter in G(¢p) and two vertices are adjacent in G(¢)
if and only if the corresponding frame elements are non-orthogonal. A simple graph
G is called a frame graph if there exists a frame ¢ such that G(¢) = G.

Similarly, with each graph G, we can associate one or more frames using the matri-
ces associated with G. In [1], the authors have discussed two different constructions
of frames for a given graph. Motivated by the significance of frame theory in both
theoretical and application domains, this paper focuses on exploring further rela-
tionships between frames and graphs. Here, we introduce a new construction of
the frame for a given graph. The rest of the paper is organized as follows: Section
2 deals with the preliminaries on frames and graphs, necessary for further discus-
sions in this paper. Section 3 discusses the construction of the frame from the new
vertex-edge matrix. Section 4 discusses the potentials of the frames obtained for
different classes of graphs, wherein the frame potentials are expressed in terms of
graph parameters. Section 5 exhibits the properties of graphs of the dual frames
constructed from special classes of graphs. Finally, Section 6 depicts the existence
of frames with given optimal frame bounds using graph theoretic approaches, the
intervals containing the lower and upper frame bounds of the frames constructed
from different graph classes. Further, it deals with the properties of frames con-
structed from graphs with restricted conditions, using Laplacian, signless Laplacian
matrices, and their eigenvalues.

2. PRELIMINARIES

Throughout this paper, we use K to denote the field of real numbers, H" to de-
note an n-dimensional Hilbert space over K, ¢p, and ¢¢ to denote respectively, a
Parseval frame and a Canonical frame of ¢, A* to denote the conjugate transpose
of matrix (or operator) A. Further, all Hilbert spaces discussed in this paper are
considered over the real field.

A finite sequence of vectors, ¢ = {f;}/*, is called a frame for an n-dimensional
Hilbert space H over a field K if m > n and there exist constants A and B such that
0< A< B<ooand

m
(1) Aol < 3 e, )P < Blel?, Vo eH.

i=1
The constants A and B are called frame bounds of ¢. The supremum taken over
all lower frame bounds and the infimum taken over all upper frame bounds of ¢
are respectively the optimal lower and optimal upper frame bounds of ¢. If A = B,
then ¢ is called a tight frame and when A = B = 1, ¢ is called a Parseval frame.
Inequality (1) is equivalent to the condition: span{f;}/, = H [8].
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The analysis operator, denoted by F' is defined as F' : H"™ — H™ such that
F(z) = ((z, fi))I*1. The synthesis operator F* is defined as F* : H™ — H"

such that F*(z;)"; = > x;f;. The frame operator, S is defined as S = F*F where
i=1

NE

S(xz) = > (z, f;) fi and the Grammian operator G4 is defined as G4 = FF*, where

(3

m
Gg(xi)ix, = (30 xifi, fi))i%q. The frame operator S is invertible, positive definite
1

Il
—

and Hermitian.l Its smallest and largest eigenvalues are equal to the optimal lower
and optimal upper frame bounds, respectively. The frame ¢ is a Parseval frame if
and only if S = I and is a tight frame if and only if S = AI, where A > 0. For a
frame ¢ = {f;}72, in H", the frame potential is defined by

(2) FP(¢) =Y [(fi ).

ij=1
For each frame ¢ = {f;}/™ ,, there exist two more frames, namely, ¢ = {S71(f;)}7™,

and ¢p = {Sfé(fz) m , called the canonical dual frame and the Parseval frame of
¢, respectively.

A graph G is an ordered pair (V, E), where V (or V(G)) is a non-empty set of

elements called vertices and E (or E(Q)) is a set of elements called edges, where each
edge is an ordered or unordered pair of vertices. A graph G is directed if E(G) is a
collection of ordered pairs of vertices and is undirected otherwise. Let u,v € V(G).
If e € E(G) and e = (u,v), then u and v are end vertices of e and are said to be
adjacent vertices. If u and v are adjacent, then we write u ~ v. Two edges are
adjacent if they share a common end vertex. An edge e = (u,u) is called a loop, and
a pair of edges e1, es where e; = e3 = (u,v) are called parallel edges. A graph having
no loops and parallel edges is called a simple graph. All graphs considered in this
paper are simple and undirected unless stated otherwise. The number of vertices
and edges of G are respectively referred to as the order and size of G. Throughout
this paper, the symbols p and g denote respectively, the order and size of a graph G
under discussion. A graph of order p and size ¢ is called a (p, g)-graph.
The line graph of G is denoted by L(G) and is defined as the graph with vertex
set F(G), wherein two elements ej,ez € E(G) are adjacent in L(G) if and only
if they are adjacent in G. An edge with v as an endpoint is said to be incident
on v and the number of edges incident on v is called the degree of v, denoted by
deg(v). The minimum and maximum degrees in G are denoted by §(G) and A(G),
respectively. A graph G is said to be regular if 6(G) = A(G) and in particular,
k-regular if 6(G) = A(G) = k. For two vertices u,v € V, the set N(u,v) ={w eV :
w ~wu and w ~ v} is called the common neighbor set of u and v. A set of mutually
non-adjacent vertices in G is called an independent set of G. If S is an independent
set of G, then the pairwise common neighborhood of S is denoted by C'N(S). That
is,

(3) CN(S)= |J N,v).
u,ES

A walk of a graph is an alternating sequence of vertices and edges. A trail is a
walk with non-repeated edges and a path is a trail with distinct vertices. A path on
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n-vertices is denoted by P,. A path with the same initial and terminal vertices is
called a cycle and a cycle on n-vertices is denoted by C),. A graph having no cycle is
acyclic. A graph G is connected if there exists a path between every pair of vertices
in G and is disconnected, otherwise. A tree is a connected acyclic graph. A graph
H is a subgraph of G is V(H) C V(G) and E(H) C E(G). A maximal connected
subgraph of G is called a component of G. A graph is complete if there is an edge
between every pair of vertices and a complete graph on n-vertices is denoted by K.
A graph G is bipartite if V(G) is the disjoint union of two independent sets, say X
and Y. Here, X and Y are called partite sets of G, and (X,Y) is called a bipartition
of G. A bipartite graph G with bipartition (X,Y") is complete bipartite if each vertex
in X is adjacent to every vertex in Y and vice versa. A complete bipartite graph
with bipartition (X,Y"), where |X| = m and |Y| = n is denoted by Ky, . A closed
trail that includes all edges of G is called an Fuler trail of G and a graph having
an Fuler trail is said to be Fulerian. A graph G is planar if it can be drawn on a
plane without intersecting edges. Two graphs G and H are isomorphic, written as
G = H, if there exists a bijection f : V(G) — V(H) such that (u,v) € E(G) if
and only if (f(u), f(v)) € E(H). If G is of order p, then the matrix Q = (¢ij)pxp,
defined by

de.g(ui)7 ifi=j
qi; =4 1, if(Ui,Uj) cF
0, otherwise

is called the signless Laplacian matriz of G. Note that Q(G) is symmetric, positive
semi-definite and it can be written as Q(G) = D(G) + A(G), where D(G) is the
diagonal matrix whose i*" diagonal entry is the degree of i*" vertex of G and A(G) is
the adjacency matrix of G, whose diagonal entries are zero and an (ij)™ off-diagonal
entry is 1 if the 7" and j** vertices are adjacent in G and is 0, otherwise. Similarly,
if G is a graph with no isolated vertex (vertex of degree zero), then the matrix
L=1I-D"2AD: is called the normalized Laplacian matriz of G [4]. The set H(G)
is defined as H(G) = {M = (mij)pxp : Mij # 0 <= (v;,v;) € E(G) and M is
a Hermitian matrix}. We refer to a matrix whose rows and columns are indexed
respectively, by vertices and edges of a graph as a verter-edge matrix. The incidence
matric of G, denoted by B(G) is a vertex-edge matrix defined as B(G) = (bij)pxq;
where b;; = 1, if j edge is incident on the " vertex and is 0, otherwise.

Let Gy be a (p1,q1)-graph and G be a (p2, g2)-graph, where p; Nps = 0. Then, the
graph operations on GGy and G2 are defined as follows:

(1) The Union of G and G2, denoted by G1UG?3 is the graph with V(G1UG2) =
V(G1) UV (Gy) and E(G1 UGs) = E(G1) U E(G5).

(2) The Join of G1 and G4, denoted by G1V Gy is the graph with V(G1V Gs) =
V(Gl) U V(Gg) and
E(G1V Gy) = E(G1UG) U{(z,y) : x € V(G1) and y € V(G2)}.

(3) The Cartesian Product of G1 and Ga, denoted by G10Gs is the graph with
V(G10G3) = V(G1) x V(G2), where (u1,v1) ~ (ug,v2) in G10OG; if and
only if u1 = ug and v; ~ vy in Gy (or) u; ~ ug in G and v1 = vs.

(4) The Composition of G1 and G4 given by Gy o Gy is the graph with V(G; o
G2) = V(G1) x V(G2), where (ug,v1) ~ (uz,v2) in G1 o Gy if and only if
uy ~ ug in Gy (or) u; = ug and v1 ~ vg in Gs.
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(5) The Tensor Product of G1 and Ga, denoted by G ® G5 is the graph with
V(G1 ® Ga) =V (G1) x V(Ge), where (u1,v1) ~ (ug,v2) in
G1 ® Gsqif and only if u; ~ ug in G7 and v; ~ v2 in Ga.

(6) The Normal Product of G1 and G, denoted by G * G3 is the graph with
V(Gl * GQ) = V(Gl) X V(GQ) and E(Gl * GQ) = E(G1|:|G2) @] E(G1 & GQ).

In this paper, we establish a relationship between graphs and frames by construct-
ing a frame from a given graph using the Construction 3.3 discussed in Section 3.
Further, the main focus of this paper is to study the properties of the frame so
obtained using the properties of the graph from which it was derived and vice versa.

3. CONSTRUCTION OF A FRAME FOR A GRAPH

Lemma 3.1. [8] Let H be a Hilbert space and let { fi}*, C H. Let F be the analysis
operator for { f;}7,. Then the following are equivalent:
(1) {fi}, is a frame for H.

(2) The frame operator S = F*F is an invertible operator on H.

Definition 3.2. [1] Let H be a finite-dimensional Hilbert space with an inner prod-
uct {.,.) defined on it. Then, to each frame ¢ of H, we associate a simple graph
G(¢) defined as follows: V(G(¢)) = ¢ and a ~ b in G(¢) if and only if {a,b) # 0.
A simple graph G is called a frame graph in H if there exists a frame ¢ in H
such that G(¢) = G. A frame graph is called a tight frame graph in H if the as-
sociated frame is a tight frame in H. Note that the graph G(9) itself is a frame graph.

In the discussions to follow, by a frame graph associated with a frame ¢, we mean
the graph G(¢) defined as above.

Construction 3.3. Let G be a given (p, q)-graph. Define G’ to be the graph obtained
from G by adding a loop at each vertex in G. Let B(G') denote the incidence matriz
of G'. For convenience, we order the edges of G' in such a way that B(G') is
expressed as follows: B(G') = (b;)px(p+q) = [[|B(G)], where I is the p x p identity
matriz corresponding to the p-loop edges in G and B(G) is the incidence matriz of

G. Clearly, B(G') has full row rank. Therefore by Lemma 3.1, the columns of B(G’)
form a frame in RP. We call that collection of columns as ¢.

In this way, given a graph G, we associate a frame ¢ in the Hilbert space RP,
whilst given a frame ¢ a ,graph is associated with ¢ using G(¢). This facilitates
studying the properties of frames in terms of graphs and vice versa.

Next, we prove that the frame graph of ¢ defined as above is isomorphic to the line
graph of G’ and we explore further properties of ¢.

4. FRAME POTENTIALS

Theorem 4.1. Let G be a (p, q)-graph. Then there exists a frame ¢ in RP with the
following properties:

553
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(1) G(¢) = L(G").
(2) FP(¢) =p+6q+ Y. [deg(u))?. (Frame Potential Formula)
ucV
(3) If Q is the signless Laplacian matriz of G, then the operator S defined by
S =1+ Q is a frame operator.

Proof. Let G’ be the graph obtained from G by adding a loop at each vertex in G
and B(G") = (bij)px(p+q) De the vertex-edge incidence matrix of G'. Let b; denote
the i column of B(G'). Clearly, as B(G’) has full row rank, ¢ = {b;}}7? is a
frame in RP. Without loss of generality, let b;, for all 1 < ¢ < p denotes the
frame vectors corresponding to the p-loop edges in G’ and bj4,, for all 1 < j < ¢
denotes the frame vectors corresponding to the remaining ¢ non-loop edges in G'.
Proof of (1): Let E(G') = V(L(G")) = {e1,€2,...,€p,€pt1,--.,Eptrq}t. Without loss
of generality, let b; be the column vector of B(G’') corresponding to e;. Clearly,
V(G(¢)) = {b1,ba; ..., bp+q}'

Now, define a mapping f : V(G(¢)) — V(L(G")) as f(b;)) = ¢;, for all ¢ (1 <
i < p+q). Clearly, f is bijective. Next, we show that f preserves adjacency. Let
ei,e; € E(G'). Suppose e; ~ ¢; in L(G'), then they share a common end vertex
in G’ and hence, their corresponding column vectors b; and b; in B(G') are not
orthogonal. Consequently, b; and b; are adjacent in G(¢).

Similarly, if a pair of vertices b; and b; are adjacent in G(¢), then their corresponding
frame elements, that is, columns in B(G’) are not orthogonal. This in turn implies
that the edges corresponding to these two columns, namely, e; and e; have a common
end vertex. That is, e; and e; are adjacent in L(G"). Therefore, e; and e; are adjacent
in L(G’) if and only if b; and b; are adjacent in G(¢). Hence, G(¢)=L(G").

Proof of (2):

p+q pt+q
FP(¢) = [{bis b7)]?
i=1 j=1
pop P ptq ptq p
=D D MDD [P+ DD b b))
=1 j=1 i=1 j=p+1 i=p+1 j=1
pt+q  ptq
+ > > by
i=p+1j=p+1
p p ptq p+q  p+q
:ZZ\bub Pr2d ] Y Kb+ 0 D [iby)P
=1 j=1 =1 j=p+1 i=p+1 j=p+1
=p+2 Z deg(u) + 4q + Z (deg(u)) (deg(u) - 1)
ueV ueV
—p+dg+ag+ Y (deg(u)? - deg(u))
ueV
=p+8g+ Y deg(u)’ — 2
ueV

=p+6q+ ) [deg(u)]’
ueV
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Proof of (3):  Let @ be the signless Laplacian matrix of G. Then, B(G)B*(G) = Q
[5]. Hence, S = [I[|B(G)][I|B(G)]* = I + B(G)B*(G) = I + Q. Clearly, S is
invertible. Therefore, it follows from Lemma 3.1, S is the frame operator in H.

|

Example 4.2. In this example, Theorem 4.1 is illustrated for the graph K 4.

(1) Let G = K 4. Then clearly, G(¢) = L(G").

(2) Assuming ¢ to be the set of all columns of B(G’), we get FP(¢) = 49.

(3) Let S = B(G')B(G')*. Then, it follows from Lemma 3.1 that S can be
written as S = B(G')B(G')* = I + Q, where Q is the signless Laplacian
matrix of G = Ky 4.

Corollary 4.3. Let G be a (p,q) graph and ¢ be the frame constructed from B(G').
Then the following conditions are equivalent:

(1) G is a mazimal planar.
(2) FP(6) = 19p+ ¥ (deg(u))? — 36.
ueV

Corollary 4.4. Let G be a (p, q)-graph. Then the following assertions hold:
) If G is a k-regular, then FP(¢) = p(k? + 3k + 1).
If G is connected, then FP(¢) > Tp—6+ Y. deg(u)?.
ucV

If G~ Ky and m > n, then FP(¢) = 6mn +m +n + mn® + nm?.
If G is a tree, then FP(¢) = 7P + Y. deg(u)? — 6.

ueV
If G is a connected non-trivial Eulerian graph, then FP(¢) > 6g + p + 4p.

If G has a perfect matching, then FP(¢) > 6q+2+ Y. deg(u)?.
ueV

1
2

(

(

(3
(4
(5
(6
(7

~— N — ~—

If G is planar, then FP(¢) <19p+ Y deg(u)? — 36.

ueV
Corollary 4.5. Let Gy be a (p1,q1)-graph and Go be a (p2,q2)-graph. Let ¢1, ¢o
and ¢ be frames constructed from B(GY), B(GY) and B(G'), where G is the graph
constructed from different graph operations. Then the frame potential of frames
corresponding to such graph operations is mentioned in Table 1.

TABLE 1. Exact frame potential for some graph operations
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Graph (G) | Frame potential of G (FP(¢))

G1 UGy FP(p1) + FP(¢2)

G1V Gy | FP(¢1) + FP(¢2) 4+ 4(p1ge + p2q1) + p1p2(p1 + p2 +6)

G10Gs [ 6(qip2 +@ep1) +pip2 + Y, deg(ui)®>+ >, deg(vi)? +8q1qo

(ui v )EV

(ui,’Uj)GV (ui,vj)EV
G10Go 6(p1az +p3q1) +pip2+p3 Y deg(u)*+ > deg(vj)? +8paqige
(uiv)EV (us,05)€EV
Gi®Gy | LR2qg+pipa+ > deg(u;)?deg(v;)?

(ui7’L)]')€V

Gi#Gy | FP(¢1)+ FP(da) —pipa+2 > (deg(ui)+deg(vj))(deg(ui)deg(v;))

Theorem 4.6. Let G; and G2 be two graphs. Let ¢1 and ¢o be the frames con-
structed from B(GY) and B(GY) respectively. If G1 = Ga, then FP(¢1) = FP(¢2).
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Proof. The result follows trivially from the definition of Graph isomorphism and the
frame potential formula. O

Example 4.7. The converse of the above theorem is not true. For example, consider
the graphs in Figure 1. Both have frame potential 56, but they are non-isomorphic.

FiGURE 1. Two non-isomorphic graphs with equal frame potential

5. DuAL FRAME

Theorem 5.1. Let ¢ be the frame corresponding to B(G'), where G =2 Kp, p > 1
with size q. Let ¢¢ be the canonical dual frame of ¢. Then G(édc) = Kpiq-

Proof. Let G = K, and ¢ = {bi}fif be the corresponding frame obtained from G’
and B(G') = (bij)px(p+q) be the vertex-edge incidence matrix of G'. Let b; be the
it" column of B(G’). Without loss of generality, let b; (1 < i < p) denote the frame
elements corresponding to the p-loops in G’ and bj;, (1 < j < ¢q) denote the frame
elements corresponding to the remaining ¢ non-loop edges in G'. Let S = (f;;) be
the frame operator corresponding to ¢ and S~! = (g;;) be the inverse of S. Now,
define the frame operator S and its inverse S~! as follows:

ifi = j U 2%p=2 el
(S)i = p, Hi=j. and (S71);; = (21771)%1’71)’ ifi = j.
b T

Let ¢ = {S ’l(bi)}f:f be the canonical dual frame of ¢. Without loss of generality,
assume that S~1(b;) denotes the canonical dual frame vectors corresponding to p-
loops for all i (1 < i < p), where S7!(b;) is the i*" column of S~ and for all
1 <5 <g, S‘l(bj+p) denotes the canonical dual frame vectors corresponding to
the remaining ¢ non-loop edges in G’. Since S™!(b;4,) is the canonical dual frame
vectors corresponding to non-loop edges in G’, that column can be written as linear
combination of two (S~'(b;))*, where S~1(b;) is the canonical dual frame vector
corresponding to the loops. Next, we prove that G(¢c) = Kpiq.

(1) If both S~1(b;) and S~1(b;) are frame vectors corresponding to the loop
edges, then
—3p+2

(2p—1)?*(p—1)*

(2) If both S~1(b;) and S~1(b;) are frame vectors corresponding to loop and
non-loop edge respectively, then

(S7H(bi), ST (b)) =

2— .
—1/7 —1/p \\ _ (gip_l)%?gjf)Za if (bzvbj> 7& 0
(ST (b)), S (b)) = i .
! = i (b, b)) =0
@p-1)2(p-1)2" (b1, b;)
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(3) If both S~1(b;) and S~1(b;) are frame vectors corresponding to the non-loop
edges, then

4p%—16p+9 . e . .
(S (b), S (b)) = § PP D if(bi, by) # 0 and i £ 5
m, if (b;, b;) = 0 and i # j.
The above inner product values are non-zero in all three cases. This implies that all
the loop and non-loop edges are mutually adjacent to each other. Hence, G(¢¢) =

Kpig- O

Theorem 5.2. Let G = K, and ¢ be the frame corresponding to B(G') and ¢¢ be
the canonical dual frame of ¢. Then G(¢c) = Kopi1.

Proof. Let G = Ky and ¢ = {bi}?ffl be the corresponding frame which is ob-
tained from G and B(G’) = (bij)(p+1)x(2p+1) De the vertex-edge matrix in G’. Let
Vi ={v1} and Vo = {u1,uz...up} be the partite sets corresponding to Ki,. Let b;
be the it" column of B(G'). Without loss of generality, let S; = {b;} be the frame
vector corresponding to the loop vi, Sz = {b;} (2 < i < p+ 1) denote the frame
elements corresponding to the remaining p-loops in G' and S3 = bj4p, (1 < j < p)
denote the frame elements corresponding to the remaining p non-loop edges in G'.
Let S = (fi;) be the frame operator corresponding to the frame ¢ and S™! = (g;5)
be the inverse of S. Now, we define the frame operator S and its inverse S~! as
follows:

op .
p+1, ifv;=v;. m, ifv; = v;.
. _op— .
(S)i = 1, ifv, € Vi,u; € Va. and (§-1);; = T (pa)” ifv; € Vi,uj € Va.
4 9 Fus = 1w v 272 (pH3) ey
, ifu; = u;. S T(pr2) Wi = Uy
. (p; .
0, ifu; # ;. m7 ifu; # u.

Let ¢1 = {S‘l(bi)}fﬁ'fl be the canonical dual frame of ¢. Without loss of generality,
let S~1(b;), for 1 < i < p denote the canonical dual frame vectors corresponding to
p-loops, where S~1(b;) is the " column of S~! and S~1(b;4,), for 1 < j < p denote
the canonical dual frame vector corresponding to the remaining ¢ non-loop edges in
G’. Since S ’1(bj+p) is the canonical dual frame corresponding to non-loop edges in
G’ and that column can be written as a linear combination of two (S~1(b;)), where
S~1(b;) is the canonical dual frame vector corresponding to the loops. Next, we
prove that G(¢c) = Kopi1.

(1) If both S~1(b;) and S~!(b;) are frame vectors corresponding to the loops,
then

22P—3(—2p—6 .
. 1w %, 1fbi651,bj652.

<S (bz)a S (bj)> ) 22P—4(2p?+13p+20) .
o Ipr2Z ifb; 7& bj € Ss.

(2) If both S~1(b;) and S~1(b;) are frame vectors corresponding to the loop and
non-loop edges, then

22;072 .

S fb; € S1,bj € Ss.

_ _ o 2p=2(p+2)2" 1104 1,Y5 3
(71 (i), 571 (by)) = & ooy 2ot 2 ,

! s (0r) Smattih . ifbi € Sp,b; € S.
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(3) If both S~1(b;) and S~1(b;) are frame vectors corresponding to the non-loop
edges, then
SL(b), S (b)) = =i P
< ( 1)7 ( .7)) - m
The above inner product values are non-zero in all three cases, which implies that all

the loop and non-loop edges are mutually adjacent to each other. Hence, G(¢¢) =
Kopy1. 0

In the following theorem, we find the canonical dual frame graph corresponding
to the frame vectors of Ky, ,, for m > 1.

Theorem 5.3. Form > 1, let G = Ky, 5, ¢ be the frame corresponding to B(G')
and let ¢c be the canonical dual frame of ¢. Then G(dc) = Kpmtntmn-

Proof. Let G = Ky, ¢ = {b;}/"T™" be the frame corresponding to G’ and
B(G') = (bij)(m+n)x(m+ntmn) be the vertex-edge incidence matrix of G’. Let
Vi = {vi,v2...v5} and Vo = {uj,us2...u,} be the partite sets corresponding
to Kppn. Let b; be the it" column of B(G'). Without loss of generality, let b;
(1 <i<m+n) denote the frame vectors corresponding to the (m + n)-loops in G’
and bjim4n, for 1 < j < mn denote the frame vectors corresponding to the remain-
ing mn non-loop edges in G'. Let S = (f;;) be the frame operator corresponding to
the frame ¢ and S~! = (g;;) be the inverse of S. Now, we define S and its inverse
S~ as follows:

n+ 1, if’l}i = Uj'
0: lf”l)z 7é ’Uj.
(S)ij =q 1L, ifv; € Vi,u; € Vo, and
(m+1)(m42n+1)
(n+1)(m(+1_)‘_(in)+m+1) )
n{m .
(n+1)(m+1%)(n+{r)l+1)7 ifv; # Vj.
- —(n+1)(m+ .
(9 1)ij - (”+1)((m+1§(n+m+1)7 ifv; € Vi,u; € Va.
(n+1)(2m+n+1)
(n+1)(m+1)(n+tm+1)’

m(n¥l _
(n+1)(m+1)(n+m+1)° lf’ui ;é uj.

if’l)i = vj.

ifu; = u;.

Let ¢c = {S71(b;)}"*™" be the canonical dual frame of ¢. Without loss of
generality, assume that for 1 <i < m +mn, S‘l(bi) denote the canonical dual frame
vectors corresponding to m + n loop edges, where S™1(b;) is the i*" column of S~!
and Sil(ijrern), for 1 < j < mn denote the canonical dual frame vectors corre-
sponding to the remaining mn non-loop edges in G’. Since S‘l(bj+p) is the canonical
dual frame vectors corresponding to the non-loop edges in G’, that column can be
written as a linear combination of two (S~1(b;)), where S~1(b;) is the canonical dual
frame vectors correspond to the loops. Hence, corresponding to S~1(b;) we obtain a
complete graph of order m+mn-+mn. Thus, the result follows as in Theorem 5.1. [
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Theorem 5.4. Let G be the complete graph of order p with p > 1 and size q and
let ¢ be the frame corresponding to B(G'). If ¢p is the Parseval frame of ¢, then

G(¢p) = Kpiq-

Proof. Let G = K, and ¢ = {b;}’*{ be the frame corresponding to B(G’). Let
B(G') = (bij)px(p+q) be the vertex-edge incidence matrix of G’ and b; be the i
column of B(G’). Without loss of generality, for all 1 < i < p, let b; denote the
frame vectors corresponding to the p-loops in G’ and bj,, for 1 < j < g denote the
frame vectors corresponding to the remaining ¢ non-loop edges in G’. Let S = (fi5)
be the frame operator corresponding to ¢ and S 5 = (9ij) be the square root of the
inverse of S. Now, we define S and S 5 as follows:

e (-1 (@p-Dvp—T+v2p=1) ...
(S)z-j={11)’ thf*],' and (57)y; ={ ~ pwnern o B
S oy Hi#E

Let ¢p = {S %l(bz)}fif be the Parseval frame constructed from ¢. Without loss
of generality, let S %(bi) (1 < i < p) be the Parseval frame vectors corresponding
to p-loops, where S_Tl(bi) is the i" column of S2 and S_Tl(bj+p), for 1 <j<gq
denote the frame vectors corresponding to the remaining g non-loop edges in G’.
Since S %(bﬂp) is the Parseval frame vectors correspond to the non-loop edges in

S

G, that column can be written as a linear combination of two (S £l (bi))®°, where

S _TI(bi) is the Parseval frame vectors correspond to the loops. Next, we prove

G(¢p) = Kpt1.

(1) If both S_Tl(bi) and S_Tl(bj) are frame vectors corresponding to the loops,
then

(p—Dv2p—T1—-(2p—1)y/p—1)
2p-D)(2p-D)vp—T1+v2p—1)+
(P—2)((p—1)v2p—1-(2p—1)y/p—1))

P’(p—1)%(2p—1)?

(57 (bi),S7 (b)) =

(2) If ST (b;) and S_Tl(bj) are frame vectors corresponding to the loop and
non-loop edges, then

(p—2)2p—Dvp—T+2(p— 1)yv2p — 1)+
20— 2)((p—1)v2p —1—(2p—1)yp—1)°

P’(p—1)%(2p—1)

(2p(2p — 1)v/p—1+2p(p—1)y/2p — 1)
(p—1)v2p—1—(2p—1)y/p—1)
P(p—1)%(2p—1)?

. (bisbj) # 0.

, if (by, b;) = 0.
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(3) If both ST (bi) and ST (b;) are frame vectors corresponding to the non-loop
edges with ¢ # j, then

(p—2)2p—1)vp—1+2(p—1)y/2p—1)
(p—6)2p—1)vp—T1+6(p—1)v2p— 1)+
4p-3) (- Dvp—1) - (2 - )vp—1)°
EU— P%(p—1)2(2p —1)2

. if (b, by) # 0.

(p=Dv2p—T—-(2p - 1)vp—T)
(4p(p —1)v2p =T+ (4p)(2p — 1)Vp - 1)
P*p—1)%p—1)?
The above inner product values are non zero in all three cases, which implies that all
the loop and non-loop edges are mutually adjacent. Hence, the result follows. O

, if (by, b;) = 0.

6. FRAME BOUNDS

Remark 6.1. Let @ be the signless Laplacian matriz of a graph G. Suppose A1 >
Ao > ... > Mg are the eigenvalues of Q. Then 1 4+ A, 1+ Ao...1 + A\ are the
eigenvalues of S, where S is the frame operator of ¢. Moreover, 1 + A1 is the
optimal upper frame bound of S and 1 + A\ is the optimal lower frame bound of S.

Remark 6.2. Since S =1+ Q, if € > 0 we choose I/ instead of I in S, then we
obtain a better optimal upper bound and optimal lower bound.

Lemma 6.3. [5] The multiplicity of the eigenvalue 0 of the signless Laplacian of a
graph G is equal to the number of bipartite components in G.

Theorem 6.4. For any odd positive integer n, there exists a frame from the graph
whose optimal upper frame bound is n.

Proof. Let n be an odd positive integer and let n = 2p+ 1. Let G = K, ,. Then the
eigenvalues of the signless Laplacian matrix of G are 0, p,2p. Therefore, it follows
from Remark 6.1 that 14 2p is the optimal upper frame bound of the frame ¢, where
¢ is constructed from B(G'). O

Theorem 6.5. For any a,b € 27" such that 0 < a < b < oo, there ezists a frame
whose optimal lower and upper frame bounds are a and b, respectively.

Proof. Let G = K, . Then, the eigenvalues of the signless Laplacian matrix of K, ,
are 0,p,2p. Based on Remark 6.1 and Remark 6.2, instead of I in B(G’), choose
I\/a, where a > 0. Then, the corresponding frame operator is, S = al + @Q which
implies that the maximum and minimum eigenvalues of S are 2p + a (= b) and a,
respectively. Therefore, for any 0 < a < b < oo and a,b € 2Z7, we can construct a
frame from the graph K, , whose optimal upper frame bound is b and optimal lower
frame bound is a. O

Lemma 6.6. [2] Let G be a regular graph of degree k. Then the following conditions
hold:

(1) k is an eigenvalue of G
(2) if G is connected, then the multiplicity of k is 1
(3) if X is an eigenvalue of G, then A € [k, k.
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Theorem 6.7. If G is a k-reqular graph of order p, then the frame constructed from
the matriz [I|B] has an optimal upper frame bound and optimal lower frame bound
in the interval [1,2k + 1].

Proof. Let G be a k-regular graph of order p. Since we know that S = I + @,
S = (k+1)I+ A(G). It follows from Lemma 6.6 that the eigenvalues of S lie in
[1,2k + 1] and hence, the optimal upper bound and optimal lower bound lie in the
interval [1,2k + 1]. O

Corollary 6.8. If G is a complete graph of order p, then the frame constructed from
the matriz [I|B] has (p — 1) as an optimal frame lower bound and (2p — 1) as an
optimal frame upper bound.

Corollary 6.9. There exists a k-reqular graph having both upper and lower frame
bounds in the interval (1,2k + 1).

The existence of such a k-regular graph given in Corollary 6.9 is shown in Example
6.10.

Example 6.10. Consider the graph Cs, the cycle on 5 vertices. Clearly, B(Ct) will
be given as below:

1000010001
0100011000
B(C)=10 010001100
0001000T1T10
0000100011

Let ¢ be the frame that is constructed from the column of B(CE). Then by Lemma
3.1, the corresponding frame operator S is written as follows:

31001
13100
S=101 3 10
00131
100 3 1

5+v5 5-v5

The mazimum eigenvalue of S is >572 and the minimum eigenvalue of S is ==
Therefore the optimal bound lies between the interval (1,5).

Lemma 6.11. [5] 0 is the eigenvalue of the signless Laplacian matriz of G if and
only if G contains at least one connected bipartite component.

Theorem 6.12. If G is a graph of order p, then the following conditions are equiv-
alent:

(1) 1 is the optimal lower frame bound constructed from the columns of [I|B].
(2) G contains at least one connected bipartite component.

Proof. Assume that 1 is the lower frame bound of the frame constructed from the
column of [I|B]. We need to prove that G contains at least one connected bipartite
component. Suppose G does not contain any connected bipartite component, then
by Lemma 6.11, the eigenvalues corresponding to the signless Laplacian matrix is
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strictly greater than 0. This implies that all the eigenvalues of S are strictly greater
than 1. Then the optimal lower frame bound is strictly greater than 1, which is a
contradiction to our assumption. Therefore G must contain at least one connected
bipartite component.

Conversely, assume that G contains at least one connected bipartite component.
Now it is required to prove that 1 is the lower frame bound of the frame constructed
from [I|B].

It follows from Remark 6.1 and Remark 6.2 that 1 4+ A,,;, is the optimal lower
frame bound and 1 + A4, is the optimal upper frame bound. Therefore, 0 is the
eigenvalue of the signless Laplacian matrix of G. This implies that 1 is the minimum
eigenvalue of S and hence, 1 is the lower frame bound of the frame constructed from
[1|B]. |

Corollary 6.13. If G is a connected graph and is not bipartite, then the frame
constructed from the columns of [I|B] has an optimal lower frame bound in the
interval (1,00).

Proof. Let G be connected and not a bipartite graph. Then, the signless Laplacian
matrix of G is non-singular. Hence, all the eigenvalues in Q) are strictly greater than
0. Therefore, the frame constructed from the columns of [I|B] has an optimal lower
frame bound in the interval (1, c0). O

Lemma 6.14. [10] Let G be a connected graph on p-vertices with signless Laplacian
matriz Q@ and normalized Laplacian L. Let the smallest eigenvalue of @ be u and

the largest eigenvalue of L be X\. Then, 2 — % <A A<2-— ﬁ.

Theorem 6.15. Let G be a connected graph of order p. Then the frame operator S
has the optimal lower frame bound in [6(2 — A) + 1, A(2 — A) + 1], where X is the
largest eigenvalue of L.

Proof. Let @@ be the signless Laplacian matrix of G and S = I + ). Suppose p is
the smallest eigenvalue of @), then 1 + p is the smallest eigenvalue of S. Therefore,
it follows from Lemma 6.14 that 6(2 — A) < p < A(2 — A), which implies that
14+0(2—-X) <14 pu<1+A(2-2X). Hence, the lower frame bound lies in
[1+52-X),1+A2-N)]. |

A graph G of order n is a dual multiplicity graph (DM graph) [4] provided one
of the members of H(G) has exactly two distinct eigenvalues.

Lemma 6.16. [4] Let G = (V, E) be a dual multiplicity graph and I C 'V be an
independent set of G. If for each v € I, there exists w € I (w # v) such that
N(v,w) # 0, then |I| < |CN(I)].

Lemma 6.17. [1] Let G be a nontrivial graph. Then G is associated with a tight
frame in a Hilbert space of dimension k if and only if it is a DM graph.

Theorem 6.18. Let G be a simple undirected (p, q)-graph with ¢ > 1 and G’ be the
graph obtained from G by adding a loop at each vertex in G. Then the graph G(¢)
is not a tight frame graph and A(G(¢)) has at least three distinct eigenvalues.

Proof. Given that G is a simple undirected (p, ¢) graph with ¢ > 1. Since ¢ > 1, there
exist vertices u;,u; € V and e = (u;,u;) € E(G). Corresponding to those vertices
we add e;,e; in [I|B]. Now we construct a graph from the columns of [I|B]. Since e;



On the construction and properties of frames using incidence matrix of graphs and their spectra

and e; are adjacent in G(¢) if and only if (e;, e;) # 0, e; and e; are not adjacent in
G(¢) and e is the common neighbor of e; and e;. Now let I = {e;,e;} C V(G(9)).
Clearly I is an independent set. Therefore by Lemma 6.16 and Lemma 6.17, G(¢)
is not a DM graph and A(G(¢)) has at least three distinct eigenvalues. d

Remark 6.19. [8] If the frame ¢ = {f;}", is Parseval in H, then the norm value
of each vector in ¢ is at most 1.

It follows from Remark 6.19 that the frame ¢ constructed using Construction 3.3
is Parseval if and only if G is either trivial (or) totally disconnected.

7. CONCLUSION

In this paper, we have introduced a new construction of frame from a given graph
G. Using this construction, the properties of frames have been explored in terms
of the properties of the associated graph. Further, we have obtained the canonical
dual frame and Parseval frame corresponding to the frame constructed from the
graphs K,, and K, , respectively. Moreover, we have also derived the necessary and
sufficient condition for which a graph attains its optimal lower frame bound. Also,
the exact range for the optimal lower frame bounds of a graph have been determined
in terms of the maximum and minimum degree of a graph.
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