Proceedings of the Jangjeon Mathematical Society WWww.jangjeon.or.kr
27 (2024), No. 3, pp. 511 - 523 http://dx.doi.org/10.17777/pjms2024.27.3.511

SOLVING NON-LINEAR FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS WITH
COMBINED ORTHONORMAL BERNSTEIN AND
IMPROVED BLOCK-PULSE FUNCTIONS

PRAVEEN AGARWAL, MOHAMED A. RAMADAN, AND HEBA S. OSHEBA

ABSTRACT. The purpose of this paper is to offer a computational way
to solve Fredholm integro-differential equations (NFIDEs) of nonlinear
type using a mixed of polynomials of Bernstein (BPs) and an block- pulse
basis functions of improved form. The nonlinear part is approximated
using combined BP operational matrices and an improved block pulse
function, while the differential part is approximated using derivative
combined BP operational matrices and an improved block pulse func-
tion. Finally, a set equations of nonlinear form is obtained by transform-
ing the main equation that we solve for the undetermined coefficients
required to obtain the approximate series solution. Using specific com-
putational examples, we also demonstrate how the operational matrices
can be used to solve (NFIDEs). 2010 MATHEMATICS SUBJECT CLASSI-

FICATION. 65L10, 651.20. KEYWORDS AND PHRASES. Bernstein and im-

proved block-pulse functions method Fredholm integro-differential equa-
tions, convergence analysis, accuracy.

1. INTRODUCTION

Integro-differential equations are frequently used to represent physical
phenomena mathematically. Fredho Imintegro-differential equations are used
in fluid dynamics, elasticity, economics, biomechanics, motion, heat and
mass transfer, theory of oscillation, and theory of airfoil (FIDE).

One of the earliest mathematical modeling problems is the development
of numerical solutions for FIDEs [1, 3]. We discovered that there is no
clear algebraic approach to solving NFIDESs, so approximation methods such
as the Walsh function method [4, 5], homotopy analysis technique [6, 7],
method of differential transform [8, 9], Chebyshev polynomial technique [10],
sinc-collocation method [10], and the method of wavelet [11, 12] are used.
BP are useful in a wide range of mathematical fields. Many researchers,
for example, [13-16], solved integral equations, differential equations, and
approximation theory with polynomials. In addition, the enhanced block
pulse function [17] was developed and is utilized to solve linear integral
equations. [18]. The purpose of this study is to create a combined function
that combines BP and IBPFs to numerically solve the NFIDE.
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i=0 0



512

Praveen Agarwal, Mohamed A. Ramadan and Heba S. Osheba

and the imposed conditions
uW0)=q; , 0=i=s—1

where u()(z) is the ith derivative of the unknown function that will be
determined, k(z,t) is the kernel of the integral, f(z) and p;(z) are known
analytic functions, ¢ is a positive integer and (A, a;) are suitable constants.
The body of this paper is as. Section 2 combines BP and IBPF's. Section
3 describes the suggested method for numerically approximating NFIDEs
using the HBIBP basis. The error estimate for the proposed technique
is shown in Section 4. Section 5 includes numerical test examples of the
proposed solution for the second class of NFIDEs in order to demonstrate
its long-term viability and accuracy. We also give some closing remarks.

2. HYBRID OF BERNSTEIN AND IMPROVED BLOCK-PULSE
FUNCTIONS(HBIBPF'S) [18]

Definition 2.1. HBIBP; ;(x) is a set of complete orthogonal system com-

posed BP and IBPF's, all of which are complete and orthogonal. HBIBP,; ; (x)
where  j=0,1,... M,i=1,2,... N+ 1 ,and i and j are the order of

both IBPFs and degree of BPs, in respective way. HBIBP (x)is given on

[0, 1) as below:

(2)
= B (B) o, we(03), 1 -
HBIBP; (x){ 0 ’ otherwise, fori=1,37=0,1,...,.M
(3) \ ,
Bim (f+5-1) o€ [(i-2)h+5,(i-1)h+3)
HBIBP; j(z) = 0 , otherwise,
fori=2,3,....N,j=0,1,....M
o d B (i) we[l-51),
HBIBP;; () _{ 0 , otherwise,
(4) fori=N-+1, j=0,1,.... M

A aresult, our new basis is{HBIBPL07 HBIBP,,,... , HBIBPy 1M}
and one can then approximate the functions, where N is an integer, that
is positive, and h = % The technique of approximating these functions is

addressed in section 2 presented below.

2.1. Approximation of functions. The function « () can be represented
using the HBIBP basis as follows:
N+1 M
(5) w(z) =YY ¢ HBIBP;;(z) = C"HBIBP () ,
i=1 j=0
where

(6)  HBIBP(x)=[HBIBP,y, HBIBP,,,... ,HBIBPy 1"

)

and
(1) C=lcio¢11s--- senprim)”

)
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we have

(8) ¢T < HBIBP (z),HBIBP (z) > =< u(z), HBIBP (z),
then

(9) C=L"'"<wu(x), HBIBP >,

with (., .) is the dot product and Lisan ((N +1) (M + 1)x(N + 1) (M + 1))
matrix that is referred to as the dual matrix that is
L=< HBIBP (z), HBIBP (x) >

1
= / HBIBP (z).HBIBPT (z)dx
0

Li 0 0 0
10

(10) 0 Ly 0 0

| o 0o sy - 0

0 00 - Ly

L;(i=1,2,... ,n+1) is as follows defined

2x 2x

h 1
5 / B; v () Bj m (z)dx
0

()

:2(2M+1)<Z,2ﬁ/[j>’

(i=Dht3 z 3 x 3
(Lr)ip1j = /(iz)h+g P (ﬁ 2T Z> Bias (ﬁ 3T Z) .
forr=2,... N
1
(12) = h/ B; v () Bjm (x) dz
0
M M
O

(2M+1)(Z.2_€4j>7

h
2

(11)

fori,j=0,... .M ,

fori,j=0,... M |

)
V)

oM \’
i+

(13)

1 2c 2 2z
(LN+1)ig1541 = /1_% B m (7 % + 1) Bjum (7 -

2
h
M
- g/ole',M(x)BjM(x)dx: 2(h2]<\/./jrl?

(
(

fori,j=0,... M ,
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The function k (z,t) €L2([0,1] x[0,1]) can also be represented as
k(x,t)=HBIBPT (z).K.HBIBP(t),
where the following matrix K is an (M+1)(N+1)is to be obtained as follows:
K=L"'(HBIBP (z),(k (z,t), HBIBP(t))) L™'.
2.2. Operational product matrix. Let CT = [CT , CT ..., C{,H} be

1 x (N +1) (M + 1) matrix where C] is 1 x (M +1) fori =1, 2,... , N+

1, hence C is (N +1) (M + 1) x (N 41) (M + 1) whenever a product’s
operational matrix

(14) CTHBIBP (x) HBIBP (z)" ~ HBIBP (z)"C.
We know have
C"B(z)B(z)" ~B)"C;, i=1,2,..., N+1,

which C’i is operational matrix of multiplication of BP found in [19, 20], so

CTHBIBP (x) HBIBP (z)"

4 0 0 0
_or| © dy 0
00 - 4
Cidy 00
0 CQdQ

l Ol

0 0 - Ont1dnia
HBIBP,, (2)"C, 0
0 HBIBP,,, ()" C,

ol O

i 0 0 . HBIBPy 1m (2)"Cnia

dy = HBIBP;,, (x) HBIBP; ,, (z)",
dy = HBIBPs,, (x) HBIBPs ,, (z)",
di = HBIBPy 1 () HBIBP N 1 ().

for =0, ....,M , where
C, 0 0
. 0 C 0
c=| . ,
0 0 CA*NH

with 0 is (m + 1) x (m + 1) matrix.
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2.3. Matrix of operational integration. It should be possible to expand
the integration of HBIBP functions into HBIBP functions using the matrix
of coefficients P. The operational matrix of the integration matrix P’s is
provided by

(15) / HBIBP (t)dt ~ PHBIBP (), 0<z<1
0

where P is (N +1)(M + 1) and HBIBP(x) is as in Eq. (2)-(4). It is
simple to see:

1
1
/Bim(I)dl':— . i=0,1,...,m.

o m+1

Then
1

1
Bim (kx)dz = ———— . i=01,... ,m.
/0 m (k) dz R 1) i=0 m

On the other hand, we are aware of

/wB(t)dtzPB(:r) ,
0

which P is Bernstein function operational integration matrix (B(z)) and
information on getting this matrix are found in [19] and [20].

T
p 1 1
fori=1 5=0,1,.... M

x
/ HBIBP; ; (t)dt =
0

O: 67 %7 1 1
%f’_’ Nim+1)> =~ N@mtD) HBIBP (z),
fori=23,...,N,j=0,1,..., M.
z 6’ 67 %
HBIBP;; (tydt = | <~ HBIBP (z) |
0 i times

fori=N+1,7=0,1,..., M,
where 1is a an (M + 1) x (M + 1) matrix whose all of its elements are 1°,
while the zero matrix 0 of size (M + 1) x (M + 1).
As a result, the operational integration matrix p is found in this manner:
SupposeA1:%,A2:%,31:Wand32:m

m+1)
A By B -+ B
0 Ay By -+ By
P= 00 Ay - By
Do © . B,
00 0o - A
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2.4. Matrix of operational differentiation. The operational matrix of
differentiation D is given by

AHBIBP(x) _ 5y prpp(r)
dx
We have 1B(x)
xr
=DB
. (z)

Which D is the operational matrix of differentiation of B(x) and information
on obtaining this matrix are given in [19, 20].

dHBIBP;  (x)

= 2ND, 0, --- 0 |HBIBP ,
fori=1 j=01,.... M
HBIBP; ; 0, -- 0 0 0
d (@) _ [ % 0, ND, 0, } HBIBP (z),
dx i—1 times
fori=23,...,N,j=0,1,..., M.
dHBIBP; ; 0, --- 0, 2ND
€z i—1 times

fori=N+1, j=0,1,..., M,
where 0is an (M + 1) x (M + 1) matriz whose elements are all zeros.
So

oD 0 0 0
0D 0 0
D_n| O 0 D 0
G 0 0 - 2D

3. OUTLINE OF SOLUTION

Here the derivation of the method for solving the sth-order NFIDE with
initial conditions (1) is to be presented.
First step: the function u(z) is approximated by

(16) u(x)~UTHBIBP (x)=HBIBP" ()U
where U is (N 4+ 1)(M + 1)-unknown matrix and basis coefficient HBIBP
is found in (2) - (5) .

Second step: The functions u(i)(x), 1 =0, 1,...,s are approximated
by
(17) u® (2) ~UT(HBIBP (2))? = UTD'HBIBP (z), i=0,1,...,s
where 5 is (M +1)(N+1)x(M+1)(N + 1) operational matrix of deriva-
tive, D' is operational matrix of derivative with power i and %HBIBP () =
DHBIBP(x).

Third step: The function k(z,t) is apprximated by
(18) k(z,t)~HBIBPT () KHBIBP (t),
where K isa (N+1) (M+1) x (N+1) (M+1)-matrix.
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Forth Step: In this step, we use the [u(z)]? general approximation for-

mula.
We obtain using Eqgs. (5) and (14).

w? (2)~[UT HBIBP(z)]"
= UTHBIBP (x) . HBIBPT (2)U
— HBIBP (z)'UU

()~ [UTHBIBP (x)]’

= UTHBIBP (z).[U"HBIBP ()]

= UTHBIBP (z) . HBIBP (z)"UU

= HBIBP (z)'UUU
AN 2

= HBIBPT (x) (U) U

As a result, u?(z) will be approximated as using induction.
~ —1
(19) ! (z) ~HBIBP" (z) (U)q U,

Replacing NFIDE of second kind equations (1) with approximation (16)
- (19).

i: HBIBP" (2)(D') U =
=0

flx)+ A /0 1 HBIBPT (z) K.HBIBP(t)HBIBPT (t) (0)" 'Udt,

zs: HBIBP (2)(D') U =
=0

1
f(z) + NHBIBPT () K / HBIBP(t)HBIBPT (t) (U)* 'Uadt,
0

where L= fol HBIBP (t).HBIBPT (t)dt is defined in Eq. (10).
s —.T ~ g—
> HBIBP"(x)(D') U = f (x) + NHBIBP" (x) . K.L.(U)" U
=0
Therefore,

a —i. T A\ q—1
(20) Y"HBIBP(¢)(D') U~ A\HBIBP" () .K.L.(U) U =f(z).
=0

To get U we collocate Eq. (4.1) in (M +1)(N +1) Newton-Cotes nodal

points as
2i—1
€T, =
Y 2(M+1)(N+ 1)

From Eq. (20) using collocation point (21), we have (M + 1) (N + 1)

linear equations is obtained and (M + 1) (N + 1) unknowns. We can obtain

(21) i=1,...,(M+1)(N+1)—1
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the unknown vector by solving the above linear system. In the expansion of
the HBIBP function, U and Eq. (16) can be aplied to get the u(z) solution.

4. CONVERGENCE ANALYSIS

This section will provide a complete study of our numerical method’s
convergence speed.

Theorem 4.1. The series solution
N+1 M
= > > ¢ HBIBP;(x) = C"HBIBP (z),
i=1 j=0

defined in Eq. (16) converges to the exact solution u(x) then

. 2
T (@) — u ()2 =

Proof. Suppose L?(R) is Hilbert space and HBIBP; ; (z) shown in Eqgs. (2-
4) gives a basis of combined Bernstein functions that are orthonormal and
block-pulse functions in its improved form.

Let u(x) = Z;VIOCH HBIBP,; ; (:U) for a fixed ¢ be the approximate
solution of the Eq. (1) where ¢; ; = L™! (u(x), HBIBP;; (z)) defined in
Eq.  (9) and L is defined in Eq.(10) as the dual matrix. Let us denote
HBIBP () = HBIBP(xy,) and oy, = (u(x), HBIBP(z,,)). Define the
sequence of partial sums {S;} of (o, HBIBP(xy,)). Let {S;} and {S;} be
the partial sums with ¢ = j. We need to prove {S;} is a Cauchy sequence in
the space of Hilbert.

Let S; =Y _ ey HBIBP(z,,)

Now,

(u(z), Si) = <u(x) .Y amHBIBP (xm)> =

m=1

Z am (u(x), HBIBP(zy,)) = z’: Oy, = zZ: |am|2.
m=1 m=1

We assert that

[1S; — Sj”2 = Z amHBIBP(xy,)
m=1
< Z amHBIBP(z,,), Z amHBIBP(xm)>
m=j+1 m=j5+1

i %
> > mowm (HBIBP (zy,), HBIBP(zy))
m=j+1m=j+1

Z ‘O‘m|2-

m=j+1
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Therefore,

) 2 .
(2 2

Z amHBIBP(xy,)|| = Z lam|?,  fori > j.
m=j+1 m=j+1
Based on Bessel’s inequality, we have Zin: i1 | |? is convergent, and thus
. 2
K3
> amHBIBP(xy)|| =0 ,asi,j— oo
m=j+1

Hence, we have

(2
> amHBIBP(xn)|| =0 ,
m=j+1
and {S;} is a Cauchy sequence that leads to convergence to s (say). One
can claim u (z) = s.
Now,

(s—u(x), HBIBP (xm))
= (s, HBIBP (zy,)) — (u(z), HBIBP (2y,))

= <4lim S; , HBIBP (xm)> — am
1—00
= lim (nHBIBP (2y,) , HBIBP (zp,)) — atm
1— 00

= Qm — Qy =0.

We reach the conclusion that
(s —u(z),HBIBP (z,)) = 0.
Hence u (z) = s and S; = anzl amHBIBP(x,,) leads to converges to
u(z) as i?8 The above relationship is only possible if u(z) = s. So that

u(z) and S; converges to the same value which guarantees the proposed
H BIBP method is convergent. U

5. COMPUTATIONAL ILLUSTRATIONS

This part contains test problems that show the feasibility and precision
of the proposed approach in this paper. MATLAB software (R2018b) was
used to perform all of the calculations (R2018b).

Example 5.1. Consider the NFIDE of first order given by

1
u'(w)—l—u(w):%(e_z—l) +/t:Ou2(t)dt ,

with initial condition u (0) = 1. This problem’s exact solution is u (x) = e~ *.

519
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TABLE 1. shows Example 1’s numerical results with M =
1, N=2.

)

T Absolute Error

Presented technique | Method of [22] | Method of [23] | Method of [12] Method of [21] for
form=3 form =4 forN=128 |[n=3, m=35|n=4, ml5
0.125| 9.0205620751e-17 | 2.4509E-010 9.4E-006 3.7591E-007 5.5200E-011 | 1.6710E-011
0.250 | 8.3266726847e-17 1.0202E-010 5.1E-006 6.6413E-007 8.9982E-011 3.9705E-012
0.375 | 7.6327852943e-17 1.6139E-010 3.0E-005 8.6917E-007 9.4606E-011 1.2126E-011
0.500| 6.9388939039¢e-17 | 3.2362E-010 4.9E-005 1.0020E-006 9.2457E-011 | 1.8312E-012
0.625| 6.2450045135e-17 | 1.9197E-010 5.5E-005 1.0757E-006 7.4991E-011 | 8.1299E-012
0.750 | 5.5511151231e-17 | 6.6120E-011 4.5E-005 1.1029E-006 4.9442E-011 | 7.7237E-012
0.875| 4.8572257327e-17 2.2417E-010 2.1E-005 1.0944E-006 2.6083E-011 2.5547TE-012

-4
#-Presented Method

-6 =Method [22
5 -8 & Method [23]
= +Method [12]
= -10 Best of Method [21]
2 12
1 E

-l6p—o 2@ P
02 03 04 05 06 07 08
Xj

F1GURE 1. For Example 5.1, compare the absolute inaccu-
racy for numerical results with M = 1, N = 2 for the
presented method with other three numerical methods

We utilized our proposed HBIBPF technique to solve Example 5.1. The
computed results for M = 1, N = 2 are tabulated in Table 1 and Fig. 1,
where the AE of the calculated solution for the presented approach is com-
pared to BPs [22] with m degree B-polynomials, wavelets and semi-orthogonal
(SO) B-spline scaling functions [23], Haar wavelets technique [12], and com-
bined block pulse functions and normalized BP (where n and m are the de-
grees of the orthonormal polynomials. In terms of precision, our technique
is definitely superior.

Example 5.2. Consider the NFIDE of first order given in [10, 21 and 22]
1

1
u'(x)zl——x—i—/ zu? (t)dt
3 =0

where u (0) = 0 is the initial condition.
This problem’s precise solution is u(x) = x.
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TABLE 2. shows Example 5.2'nd numerical results with

Absolute
AE)

Error(

M=1, N=2.
T Precise solution Presented  tech-
nique
0 | 0.0000000000 0.0000000000
0.1 0.1000000000 0.1000000000
0.2 0.2000000000 0.2000000000
0.3 0.3000000000 0.3000000000
0.4 | 0.4000000000 0.4000000000
0.5 0.5000000000 0.5000000000
0.6 0.6000000000 0.6000000000
0.7 0.7000000000 0.7000000000
0.8 0.8000000000 0.8000000000
0.9 0.9000000000 0.9000000000

9.711451]655e-17
9.1593399532¢-17
8.6042284408e-17
8.0491169285¢-17
7.494005/162¢-17
6.9388939039¢-17
6.3837823916e-17
5.8286708793¢-17
5.2735593670e-17
4.71844785)Te-17

Example 5.2 is solved using our suggested HBIBPF approach, and the
obtained approximate numerical results are tabulated, as in Table 2, for M =
1, N = 2. The exact solution can be obtained if we increase the values of
M and N, as shown in methods [21] and [22], while the mazimum absolute

error using the sinc approach is 1.5217E—03 [10].

Example 5.3. For the first order NFIDE given in [24]

1 1
u/(a:):l—f:x+/ wtu® (t)dt
4 t=0

whose initial condition u(0) =0 and u(x) =x its exact solution.

TABLE 3. The obtained computed results for example 5.3

with M =1, N=2.
x | Ezact  solu- | Presented AE Method of [24]| A E
tion technique

0 | 0.0000000000 | 0.0000000000 | 4.9004977482e-17 | 0.000000000 0.00000E+00
0.1 0.1000000000 | 0.1000000000 | 4.0505216262e-17 | 0.100000001 1.00000E-09
0.2 | 0.2000000000 | 0.2000000000 | 3.2005455041e-17 | 0.200000004 4.00000E-09
0.3 | 0.5000000000 | 0.3000000000 | 2.3505693821e-17 | 0.300000009 9.00000E-09
0.4 | 0.4000000000 | 0.4000000000 | 1.5005932600e-17 | 0.400000016 1.60000E-08
0.5 | 0.5000000000 | 0.5000000000 | 6.5061713798e-18 | 0.500000022 | 2.20000E-08
0.6 | 0.6000000000 | 0.6000000000 | 1.9935898407e-18 | 0.600000030 3.00000E-08
0.7 0.7000000000 | 0.7000000000 | 1.0493351061e-17 | 0.700000052 5.20000E-08
0.8 | 0.8000000000 | 0.8000000000 | 1.8993112282e-17 | 0.800000146 | 1.46000E-07
0.9 0.9000000000 | 0.9000000000 | 2.7492873502e-17 | 0.900000428 | 4.28000E-07

521
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#-Exact solution
-wmethod in [24]
#-Present method

FIGURE 2. numerical results absolute error comparison for
Example 5.3 with M = 1, N = 2 for the presented method
with BP method [24] where n = 5 is degree of the Bernstein
basis polynomial.

Table 3 summarizes the approzimate solutions of Example 5.3 and depicts
them in Fig. 2 using the provided technique (for M=1, N=2) and BP (for
degree 5) [24]. The exact solution can be obtained if we increase the values
of M and N. The proposed method is clearly more accurate than the method
described in [24].

6. CONCLUDING REMARKS

In this study, the combined BPs and IBPFs described in [18] were used
to find numerical solutions (NFIDEs). Examples of tests are provided to
demonstrate the proposed method’s accuracy and applicability (HBIBPFS).
In terms of accuracy, the proposed combination technique outperforms BPs,
Semi-orthogonal B-spline scaling functions wavelets method, Haar wavelets
method, combined block pulse functions and normalized BP, and the sinc
method. The numerical results show that the approach has a lot of potential
for dealing with more general linear integro differential equations, which the
authors are investigating.
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