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ABSTRACT. The study has been carried out on the boundary layer flow
and heat transfer analysis in an MHD viscoelastic Maxwell fluid using
the Cattaneo - Christov heat flux model. The effect of MHD on the
Maxwell fluid over a stretching surface is investigated in the presence of
suction/injection parameter. The nonlinear system of governing equa-
tions along with the boundary conditions is reduced into a set of coupled
ordinary differential equations using a suitable similarity transformation.
The nonlinearity of the equations is dealt with quasilinearization tech-
nique. The numerical solutions of resultant equations are determined
using the Chebyshev wavelet collocation method and the Haar wavelet
collocation method with the help of MATLAB software. The obtained
results are compared and represented in terms of graphs and tables. The
effect of various physical parameters such as elasticity parameter (Deb-
orah number), heat flux relaxation time parameter, magnetic parame-
ter (Hartmann number), viscous dissipation (Eckert number), Prandtl
number and suction/injection parameter on velocity and temperature
profiles are well discussed. The numerical values of skin friction coeffi-
cient f”(0) and wall temperature gradient 6'(0) are also tabulated and
compared to existing literature in limiting case. Error analysis has been
carried out to check the convergence of the numerical scheme.
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1. NOMENCLATURE

tangential and normal distances
velocity components in the z and y axis
similarity variables

dimensionless stream and temperature functions
derivative with respect to n

electrical conductivity of the fluid
applied uniform magnetic field

fluid relaxation time

thermal relaxation time

thermal diffusivity

temperature of fluid

temperature at the wall
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ambient fluid temperature
thermal conductivity
specific heat at constant pressure
suction/injection velocity
fluid density
stretching rate/positive constant
dynamic viscosity
kinematic viscosity
elasticity parameter (Deborah number)
non-dimensional thermal relaxation time parameter
r  Prandtl number
¢ Eckert number

suction/injection parameter
Mn magnetic parameter (Hartmann number)
Tw  surface shear stress
Rex local Reynolds number
Nuy local Nusselt number
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2. INTRODUCTION

In recent years, a lot of investigation has been done on Maxwell fluid. It is
the most widely used and the simplest model of viscoelastic fluid. The upper
convected Maxwell (UCM) fluid gained a remarkable attention in the past
few years. An elastic term relative to the Newtonian fluid model is present
in UCM fluid which shows the influence of elastic force on the flow and heat
transfer of the viscoelastic fluid [1]. The UCM fluid has the constitutive
equation of the form,

D
(1) T+ A i Vu.r —7.Vul' | = p(Vu + Vul),

D
where Di is the material time derivative, which gives the relation between

the stress tensor 7 and the velocity gradient Vu [2]. In this line of investi-
gation, Sadeghy et al. [3] have done the theoretical analysis of the flow of
UCM fluid in a quiescent fluid. They have employed perturbation method,
fourth-order Runge-Kutta method and finite difference method to obtain
the numerical solutions. They observed that as the value of Deborah num-
ber increases, the wall friction coefficient decreases for the flow. Abbas et
al. [4] have considered the study of MHD upper convected Maxwell fluid
in a channel in the presence of porous medium and obtained an analytical
solution using homotopy analysis method (HAM).

Hayat et al. [5-7] have obtained the solution of MHD boundary layer flow
of UCM fluid over a porous stretching sheet using HAM, including the effect
of chemical reaction species past a porous shrinking sheet and stagnation
point flow respectively. Hayat and Abbas [8] analyzed the two-dimensional
boundary layer flow of UCM fluid in a channel with chemical reaction using
HAM. The work of Hayat et al. [9-11] also includes the investigation using
HAM to obtain the solution of Maxwell fluid over a stretching surface in the
presence of Soret & Dufour effects, radiation effects in the porous channel,
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over a moving surface with convective boundary conditions respectively. Tri-
pathi et al. [12] presented a fractional Maxwell model for the peristaltic flow
of viscoelastic fluid. The analytical approximate solutions were obtained by
the homotopy perturbation method and compared with the solutions of the
Adomian decomposition method.

Chaudhary et al. [13] have analyzed the effect of thermo-physical proper-
ties on convective heat transfer of magnetohydrodynamics slip flow due to a
permeable moving plate using the shooting method. They noticed that the
variable thermal conductivity enhances the velocity. Chaudhary et al. [14]
have investigated the boundary layer flow of a nanofluid in a saturated
porous medium over a moving plate with viscous dissipation using fourth
order Runge-Kutta shooting technique. Their study reveals that the velocity
and concentration profile increases while the temperature profile decreases
with increasing porous medium parameters. Marasi et al. [15] used Ado-
mian polynomials to take care of the nonlinear terms and solved linear and
nonlinear partial differential equations by the differential transform method.
Negero et al. [16] and Woldaregay et al. [17] applied the fitted mesh finite
difference method to solve boundary value problems that are frequently en-
countered in the spatial diffusion of reactants and in control systems.

Abel et al. [18] have studied the effect of a magnetic field on the vis-
coelastic liquid flow and heat transfer over a stretching sheet with a non-
uniform heat source. The study of an unsteady stretching surface embedded
in a porous medium in the presence of suction/injection is considered by
Mukhopadhyay in [19] and the effect of thermal radiation in Mukhopadhyay
et al. [20]. Nadeem et al. [21] have analyzed the effect of MHD, elasticity and
nanoparticles on the boundary layer flow and the heat transfer of Maxwell
fluid past a stretching sheet graphically. Siri et al. [22] investigated the
boundary layer flow of viscoelastic fluid over a stretching surface in the pres-
ence of suction/injection parameters. Heat transfer of the fluid is analyzed
using the Cattaneo - Christov heat flux model. The effect of various physi-
cal parameters on velocity and temperature profiles is discussed. Numerical
solutions obtained by the Haar wavelet quasilinearization method and the
RK Gill method are compared. They observed that the suction/injection
parameter decreases the skin friction coefficient. Wahid et al. [23] have
considered and examined the magnetohydrodynamics slip Darcy flow of vis-
coelastic fluid over a stretching surface in a porous medium with the presence
of thermal radiation and viscous dissipation.

Sankar et al. [24,25] have investigated the effects of the location of a
discrete heating and salting segment on double-diffusive natural convection
in a vertical porous annulus numerically using the implicit finite difference
technique. They observed that the average Sherwood number increases with
the Lewis number, while for the average Nusselt number the effect is oppo-
site, also their results showed that when the size of the heater is smaller, the
heat transfer rates are higher. Girish et al. [26] have obtained the numerical
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solution of the flow problem due to double-passage annuli filled with fluid-
saturated porous media using the implicit finite difference method. They
noticed that the temperature profile enhances with channel height and shift-
ing baffle towards the inner wall but it reduces with an increase in the values
of Grashof number and Darcy number towards an adiabatic wall. Reddy
et al. [27] have considered the computational study of buoyant convection
and heat dissipation processes of hybrid nanoliquid saturated in an inclined
porous annulus. They have used the time-splitting Alternating Direction
Implicit and line over-relaxation methods to obtain the numerical simula-
tions. Their results revealed that when a stronger magnetic field is applied,
it retards the flow movement as well as the heat dissipation rate due to its
resistive effect.

Fourier [28] is the first person who proposed Fourier’s law of heat con-
duction. Whenever there is a temperature difference between the objects
or between the different parts of the same object, then there will be a con-
cept of heat transfer. In 1822, in his book, he stated that “Heat flux is
directly proportional to the magnitude of the temperature gradient” which
is the description of the parabolic equation. However, this was the obstacle
faced initially, since there were no objects satisfying these conditions. Later
to avoid this, Cattaneo brought changes in Fourier’s law by adding a relax-
ation time term. Then Christov [29] extended this law by replacing ordinary
derivatives with Oldroyd’s upper convected derivative. This is known as the
Cattaneo - Christov heat flux model after Fourier’s law of heat conduction.
It is a generalization of Fourier’s law. Fluid velocity is considered in the
constitutive relationship between the heat flux and fluid temperature which
shows that heat flux is related to fluid velocity as well as temperature gra-
dient.

Tibullo et al. [30,31] obtained the uniqueness and the structural solution
for the temperature governing equation for the incompressible fluid by using
the Cattaneo - Christov heat flux model. Straughan et al. [32] investigated
thermal convection with the help of the Cattaneo - Christov heat flux model
in the horizontal layer of an incompressible Newtonian fluid. Han et al. [33]
have studied the boundary layer flow and heat transfer of a viscoelastic
fluid by employing the upper convected Maxwell fluid model and the Cat-
taneo - Christov heat flux model over a stretching plate with a velocity slip
boundary. The approximate analytical solutions are obtained by the homo-
topy analysis method. The impact of elasticity number, Prandtl number,
slip coefficient and relaxation time of heat flux on velocity and temperature
fields are analyzed and discussed. Mustafa [34] examined the rotating flow
of viscoelastic fluid over a stretching surface by employing the Cattaneo -
Christov heat flux model. Further, a lot of work on the Cattaneo - Christov
heat flux model can be seen in [35-40].

At the beginning of the 1990s, wavelets were used to obtain the solu-
tion of differential equations. These wavelets have gained the remarkable
attention of researchers. There are different types of wavelet families that
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can be applied. Based on this, we have to integrate wavelet functions to
obtain the wavelet coefficients either by the Galerkin method or the col-
location method [41]. Debnath and Shah [42] described a brief historical
introduction to wavelet and wavelet transforms with their basic properties.
Their study includes the discussion of types of wavelets with their graphical
representation and applications. Adibi et al. [43] used Chebyshev wavelets
to obtain the numerical solution of Fredholm integral equations of the first-
kind. Hosseini et al. [44] obtained numerical solutions of ordinary differen-
tial equations using Chebyshev wavelet collocation method. They tested the
spectral method for the same work which does not work well for ordinary
differential equations. They also applied the Chebyshev wavelet Galerkin
method for these kinds of problems.

Celik [45,46] used Chebyshev wavelets to determine the solution of the
Bessel differential equation of order zero, the Lane-Emden equation, a class
of linear and nonlinear nonlocal boundary value problems of second and
fourth order. They noted that the accuracy of the method increases as
the number of grid points increases. Heydari et al. [47] obtained the so-
lution of partial differential equations using the Chebyshev wavelet collo-
cation method with less number of grid points which gave accurate so-
lutions. Saeed [48] solved nonlinear boundary value problems using the
wavelet Galerkin method with the quasilinearization technique by consider-
ing Daubechies scaling functions as Galerkin basis. Youssri et al. [49] have
discussed the algorithm based on spectral second-kind Chebyshev wavelets
in solving linear, nonlinear, singular and Bratu-type equations. They have
noticed the efficiency and the accuracy of the method for less number of
collocation points.

Sumana et al. [50-52] used the Haar wavelet collocation method to ob-
tain the numerical solution of one-dimensional Fredholm integral equations
of second-kind, non-homogeneous Burgers’ equation with linear and periodic
initial conditions and non-planar Burgers’ equation. Sumana et al. [53] inves-
tigated the solution of time delayed Burgers’ equations using Haar wavelets.
The work of Sumana et al. [54] includes the study of Laplace and Poisson
equations using two-dimensional 3-scale Haar wavelets. They have carried
out the error analysis and shown that the solution improves as the level
of wavelet resolution increases. Usman et al. [55] obtained the solution of
MHD 3-D fluid flow in the presence of slip and thermal radiation effects
using Chebyshev wavelets. They noticed that a suitable selection of stretch-
ing ratio parameter will help in hastening the heat transfer rate for a fixed
value of of velocity slip parameter and in reducing the viscous drag over the
stretching sheet. Also efficiency of the method was shown by convergent
analysis.

Awashie et al. [56] have implemented the Chebyshev wavelet collocation
method with an operational matrix of integration in the study of oil-water
two-phase fluid flow in a reservoir. Wavelets have many applications in
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signal and image processing like compression, de-noising, discontinuity de-
tection, audio enhancement and effects, edge detection, image fusion, im-
age enhancement and many other applications. Sajid et al. [57] used the
Legendre wavelet spectral collocation method to analyze the effect of radia-
tion and slip on viscoelastic Walter’s B fluid. Oruc et al. [58] considered the
one-dimensional time-dependent coupled Burgers’ equation along with the
suitable initial and boundary conditions. The numerical solutions of this
equation are obtained by using the Chebyshev wavelet collocation method.
It is found that the proposed method gives accurate results in short cpu
times. It is also examined that the method is computationally cheap and
quite good for an even less number of collocation points. Recently, Jakhar et
al. [59,60] have used Wavelet-Fractal Transformation in Gradient Domain
for image resolution enhancement.

The main aim of this paper is to study the momentum and heat transfer
using the Cattaneo - Chistov heat flux model of an upper convected Maxwell
fluid. The effect of physical parameters such as magnetic parameter, elastic-
ity parameter, thermal relaxation time, Eckert number and Prandtl number
are represented graphically and discussed. The current study is organized
in the following way: In section 3 we describe the mathematical formulation
of the problem under discussion and derive its governing equations along
with appropriate boundary conditions. The method of solution is discussed
in section 4 and the error analysis has been carried out in section 5. Numer-
ical results and discussion are included in the section. 6. Finally, section 7
reveals the important findings that are summarized.

3. MATHEMATICAL FORMULATION

Yy, v

Thermal boundary layer

Momentum boundary layer

Boundalry layer

Viscoelastic fluid

| | |

By By By
Stretching surface Uniform magnetic field

FIGURE 1. Physical configuration of the problem.

Consider an incompressible upper convected Maxwell fluid flow over a
stretching surface in two dimensions. The flow is considered to be steady
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and laminar. The effect of the magnetic field is included with the Cattaneo -
Christov heat flux model in the presence of suction/injection. In this model
pressure gradient is negligible. The equations governing the problem under
consideration are given by,

Oou Ov
2 gu v _y
@) Ox * Oy ’
ou Ju 0%u 0%u 0%u ?u  oB?
3 o= (P = S e — ) = y—— - 220
) Yow +U8 A (u Ox2 v Oy? * uv(%ﬁ@y) l/(’“)y2 p “
(4)
u@_T_H)a_T_'_& u@a_T+U@6_T+u@a_T+va_ua_T+2uan_T
ox Oy ¢, \ Oz 0z dy dy ox dy Oy Ox 0xdy
n 5 0°T n 2 0°T o’T n oB? ,
u— 40— | =a— + —u”.
Ox? Oy o2 pey
The corresponding boundary conditions are
(5) u=Uy(x)=azx, v=vy, T=T, at y=0,
(6) u—0, T—oTyw as y— oo,

where x and y are the directions along and perpendicular to the surface and u
and v are the velocity components along the x and y directions respectively.
By is the applied uniform magnetic field, o is the electrical conductivity of
the fluid, v = £ is the kinematic viscosity, u is the coefficient of viscosity,
p is the fluid density, A; is the fluid relaxation time, Ao is the thermal
relaxation time, T is the temperature of Maxwell fluid, a = % is the
thermal diffusivity, &k is the thermal conductivity and ¢, is the specific heat
at constant pressure, vy is the velocity due to suction/injection at the wall,
a is the stretching rate of the stretching surface, T, is the temperature at
the wall and T is the ambient fluid temperature.

By using the following similarity transformations,
T-Ty

(7) 77\/5% wifl?\/ﬁf(ﬂ)a QZW’

in which ) is the stream function, the governing partial differential equations
(2)-(4) along with the boundary conditions (5)-(6) can be converted to a
system of two nonlinear coupled ordinary differential equations,

®)
1) =7 )+ F () £ ()8 20 () () n) = £ () ()| =M () = 0,

(9) 50" () +F ()0 (o) = [ 7o) ()0 )+ £ ()6 ()| -+ M ) =,
with the boundary conditions,
(10) fmy=8, f)=1, 6n)=1 at n=0,

(11) f'(n) =0, 6(n)—0 as 71— oo,
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where f and 6 are the dimensionless stream and temperature functions re-

2
spectively and the prime denotes the derivative with respect to . Mn = UaBPO
is the magnetic parameter (Hartmann number), Ec = % is the local

v

Eckert number, Pr = Z is the Prandtl number, 8 = Aja is the elasticity

parameter (Deborah number) and vy = % is the non-dimensional thermal
relaxation time, a is a positive constant, S = —\}’(% is a suction parameter,

S > 0 corresponds to suction, S < 0 correspond to injection and S = 0 is an
impermeable surface.

3.1. Skin friction coefficient. For the viscoelastic fluid past a stretching

surface, the required skin friction is the skin friction coefficient or frictional

drag coefficient Cy and is given by,

Tw

(12) Cr=1+—,
3pU2

ou
where 7, = ,ua—|y:0 is the surface shear stress or the skin friction along the
Y

1 U,
stretching surface. Thus, we have ECfReX% = f"(0) where Rey = Juw® is
v

the local Reynolds number.

3.2. Wall temperature gradient. The heat transfer phenomenon is an-
alyzed in terms of dimensionless number of temperature gradient, known
as Nusselt number. The local Nusselt number Nuy in the present case is

derived as,
T oT
13 Nug=——"t ()
(13) (Tw — To) (8y>y—0
Nuy
Thus, we have - —6'(0) where Reyx = Vw2 is the local Reynolds
v Rey v
number.

4. METHODOLOGY

The methodology used to solve the problem is Chebyshev wavelet collo-
cation method. In this method, we use shifted Chebyshev wavelets which
are defined in 4.1. In 4.1.1, we define finite sum of Chebyshev wavelets for
an unknown function.

4.1. Shifted Chebyshev Wavelets. The family of Shifted Chebyshev wa-
velets [62] are defined on the interval [0, L] as,

am2§ K
(14) (@) = Ynm(2) = jﬁ;ﬂ(%w*%HJ) G<r<6

0, otherwise
where

(15) am = {f m=0 &= (Z,C—__ll) L, &= (%) L.

m>0"’
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In the above definition, i = n 4+ 2°~'m, K is the level of resolution, n =
1,2,---281 is the translation parameter, m = 0,1,2,--- ,M — 1, M > 0
and z is the normalized time. T,,(z) are Chebyshev polynomials of first-
kind of degree m which are orthogonal with respect to the weight function

w(x) = \/1177 on [—1,1].
The wavelet collocation points are defined as
_3—05

&Zj N avj:1a27"'7N7

where N = 28147,

To solve the differential equations of higher order, we require the following
integrals.

wio) = [ “pie)ds, (@) = / “pi(@)de and ri(z) = / " g@)de.

4.1.1. Function Approzimation. A function f(z) which is square inte-
grable on [0,1) can be expressed as infinite sum of Chebyshev wavelets
as [56],

(16) F@) = """ anmtbnm(2),

n=1m=0

where
1
(17) Anm, = /0 F(@) Y (2)wn (z)dz.

If the function f(x) is approximated as piece-wise constant in each sub-
interval, then equation (16) becomes

2K=1 pr—1

n=1 m=0

where a,., are the Chebyshev wavelet coefficients to be determined.

4.2. Method of Solution. Using the above defined shifted Chebyshev
wavelets and function approximation, the governing nonlinear differential
equations are solved. Before that the nonlinearity is reduced by quasilin-
earization technique as shown below.

Using quasilinearization technique [48,61,62] equations (8)-(11) reduce to,
(19)

(1= 8726n)]" Fian) — [BF2n) + 26822 L) — £
=2Bfr () fr () 2 (n) — {21’;(77) —2Bf+(n) f7' (n) +Mn — 28 f(n) £ (1)
+282 3 () £7/ (1) = MBSE)] fha () + [n) + 280 17 ()
+282 12 () £ () 17/ (n) = 28 (n) £ (n) — 2B8Mnf, () £} (n)
B frar(n) = S ) F ) = 17 (1) = B2 ()
4B fr () fr () f7 () + B () f7 () — 2B8Muf (n) f7(n),
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(20) 2
{1 - Prvff(n)] ei(n) — {Prvfr(n)fl(n) —Prf(n) = Pr*y £ (n) f1(n)
+Pr?yf3 (n)} 0, 1(n) — [owr(n)%(n) — Pr®y? £3(n)6..(n) — 2PrMnEcf,(n)
+2Pr*yMnEc f? (n)fé(n)] Sri(n) — [Pr%sz(n)fé(n)ﬁi(n) — Pryf2(n)0,.(n)
+Pry f1(n)0(n) — 2yPr*MnEc ;. (n) f2 (1) — Pr@’r(n)} fre1(n) = Prfy(n)6,.(n)
+Pr2y £3(n)0,.(n) + Pr2yMnEcf2(n) f£ (1) — 2Pry0,(n) f(n) f1.()
+PrMnEcf” (n),
frei(m) =S, fiam)=1, b6(n) =1 at n=0,

fraa(m) =0, O41(n) =0 as n— oo,

where r is the iteration parameter.

Now, equations (19)-(20) are solved using Chebyshev wavelet collocation
method. The Chebyshev wavelet series for the highest order derivative can
be written as follows:

(21)

N

(22) Flan) =" anbi(n),
=1
N

(23) r(n) = Z bibi(n).
=1

Integrating equations (22)-(23), then using boundary conditions (21) we
obtain the lower order derivatives as
N

@) s =m0 - 1ad) - 1.
i=1
/ = " L—n
(25) frya(n) = Zaz‘ (%‘(77) - Z%(L)) + A
i=1
2 —
@) ol =2 (no) - gram) + T2 s,
i=1
N
o) o =3 (o) - 1a0) - 7.
i=1
(98) Ol = Sb (aln) — La()) + E 0
i=1

where L is sufficiently large number. Substituting equations (22)-(28) and by

discretizing equations (19)-(20) using the collocation points 7; = ‘7—,j =

1,2, ..., N, we obtain the following system of linear algebraic equations,

N
(29) Zaisl = Tl,
i=1
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N N
(30) Z a;Sa + Z biS3 =Ty,
i=1 i=1
where

S1=[1-B520] vitn) — [ = 5utn) — 2851 n) + 267 £ ) 51 )
8] [pn) — Ta(D)] ~ [2610) — 265 52 n) — 2672 m) 1)

o+ Mn + 282 £2 () £/ (n) = MugF20n) | [a:n) — mai(L)] + |28 () 17/ )
— 28Muf,(n) f(n) + B ) £ () + 2622 () f.(n) £ () + £ ()
280,17 )] [r) — ().

S2 = = [Py o ()0(n) = Pr?y2 £2(m)0,(n) + 2Pr*yMnEcf(n) £} (1)
— aMuPrEc;(n)| |a:(m) — Lai(L)] = [Pr2f2n) £ (n)0 (m)
— P2y f2(n)0;.(n) + Pryf](n)0;.(n) — 29Pr*MnEcf, (n) £, (n)
—pealn)] [ — Lan).

Sy =[1 = Pra2)] i) — [Profelo) fin) — Pes(n) — P £20) )
+ P2y} (n)} [pz—(n) - %%’(L)},

Ty = [fr(n)fl’(n) — BI )5 () + 4B£-(n) £ (n) £ (n) — 2BMnf2(n) £1(n)
+ BRI ] - [ [570 + 262 r; — 285 ) i) — 1 ()]
+ [E] [0 — 285, 2 n) — 2882 ) 1) + 282 £ ) 7 o)
M0 Mg 2] — [TEE2 ] (312017 )+ 285087 )
17 0) + 282 F2 ) £ ) £ 1) = 286, ()£ 1) + 28Mn () £ ()]

Ty = [Pr2 f2(1)0, (1) — 2Pr6, (1) (n) £ (n) + PryMuEc f2(1) £ ()
4 Pef ()0 () + P! ()] — ][ - PR )
— Pefi(n) + Profy () 73 n) + Pra )] + 2 [Prod o)
— Pr2 f3(n)0; (n) + 2Pr2aMuEc (1) f1(r) — 2MnPrEc; (n)]

(1220 o] [Prystnel () — Pra f2n)el (o)

+ P2y f2() £ (n)0 () — Pré () — 29Pr*MnEef,(n) £/’ (n)]
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Quasilinearization is an iterative technique that requires an initial approx-
imation to start the the procedure. Thus, we select an auxiliary linear
operator for the governing equations respectively as,

(31) Li=f"—f and Ly=0"—0.

The initial approximations fo(n) and 6y(n) are obtained from equation (31)
using the boundary conditions (21) as,

(32) fom) =S+ (1 —e) and 6y(n)=¢".

Equations (29)-(30) can be solved simultaneously to obtain the Chebyshev
wavelet coefficients a; and b;, Vi = 0,1,...N. These coefficients are then
substituted in equations (22)-(28) to obtain the approximate solutions at
the collocation points n — n;. The comparison of numerical solutions ob-
tained by the Chebyshev wavelet collocation method and the Haar wavelet
collocation method for f/(n) and 6(n) is as shown in Fig. 2a and Fig. 2b
respectively. We can see that the Chebyshev wavelet solutions are in good
agreement with the Haar wavelet solutions.

* HWCM
CWCM
B,y=10
By =10
* By=05
By =05

* HWCM
CWCM
08 B.y=10
By=10
0.7 1 * B,y=05
k B,4=05

(A) Velocity profile f'(n) (B) Temperature profile 6(n)

FIGURE 2. Comparison of numerical solutions of f/(n) and
O(n) for different values of 3,y = 0.5,1 when Pr = Ec =
Mn=1,S=0.

The important dimensionless physical parameters f”(0) and 6’(0) are de-
termined numerically from equations (8)-(11) using the Chebyshev wavelet
collocation method as,

(33) 710) = =7 = 7 S (L),
=1
) 1 1Y

(34) 0'(0) = 771 > bigi(L).
i=1

5. ERROR ANALYSIS

Using the following lemma through the proofs of Theorem 1 and Theorem
2, the accuracy of the Chebyshev wavelet collocation method is carried out
and its convergence is verified.
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Lemma 5.1. Let f(n) € L*(R) be a contz’nuous function in (0,L) with
|f"(m)| < K1; V€ (0,1); Ky > 0. If f(n Z Zanmd)nm , then the

n=1m=0
convergence of the series is uniform.

Proof. Consider,

1
anm =(f(1); Ynm(0)) 2210,1) = /O F)bnm(n)wn (n)dn

7T x * *
:/((jl ))L ;‘%ﬁf(n)Tm (2—77 —2n+ 1) w <2—" —2n+ 1> dn.
oK=T

For m > 1, we have

9% L(cos® +2n —1) ] 1 Lsin6
Gnm —/ = 22 f < 5K ) cos(m@)m <— 5K > do
\/7/ (L(cos@—i—Qn 1)> cos(m)df
\/>/ y [ L(cos@+2n —1) sin 0 sin(m — 1)0
2 A m 2K m—1

_sin(m + 1)9} "
m+1

Since |f"(t)] < K7, we have
(35)

5
KiL2 i

|anm| < 5167/ sin
22 my/7 Jo

Since n < 2871 equation (35) becomes

m—1 m+1

36) ol < () 278

For m = 1, we have

(37)  aum _\F < COS(Q); 2n = 1)> cos(0)df
(38) =\/§ QTTK i y < <C°S(9)2I 2n = 1>> sin?(8)dé.

Note that f’(n) is bounded on [0, L] due to the fact that |f”(¢)] < K; and
from mean value theorem. If | f'(n)| < Ka; Kg > 0. Then,

(39

L 2L
|anm| <

5K )> Sin2(9)’ do < <2£,C>j NG

Since n < 2’C 1, equation (35) becomes

(40) - (%) N

< cos(f) + 2n —

. . 5
- [sm(m —1)0  sin(m + 1)0} ’ 4 < %ﬁKlL? .
22 (m?2-1)
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The relations (36) and (40) are absolutely convergent. For m = 0, according
to the definition of ¢nm(n) in equation (14), the series > 7 | anotno(n) is
convergent. Therefore, the series > 07 | S°™  apm¥nm (1) converges to f(n)
uniformly. O

Now, we introduce Theorem 1 and Theorem 2, which gives an upper
estimate for the truncation error.

Theorem 5.2. If f(n) is the exact solution and fn(n) is the Chebyshev
wavelet solution for the velocity profile, then

(oo}

1
VOirK, L3 < 1 .
1Byl < g > s > m2—12) -

n=2K-141 " m=M

Proof. From equation (26), we have

4 el = (o0 - o))+ (1Y 4
MU= 2 S oL '
Taking the asymptotic expansion of the equation (48), we obtain
o0 2
Ny (T n(2L —n)
@ s =3 (v - fram) + ("2 ) 45,

The error estimate is given by,

By |l = 11£(n) = ()]

> ai (i - ;’2%@))‘.

i=N+1
We have,
[e'e) 0 172 e’}
| Eryll® = / < > a <7"i(77)2LQi(L)>7 > a(n(n)
T \i=N+1 I=N+1
2
——q(L d
57 4( )>> 77’
o0 o0 1 ? o
=12 @ > af (n - Fam) (non - Fam)
i=N+1  [=N+1
< 0D allal Gy
i=N+11=N+1
where

) ci=sp [ (00 - L)) (o0 - Law)) an

Therefore, we obtain

oo oo

(44) 1B P < D il Yo al.

i=N+1 I=N+1



Wavelet analysis of viscoelastic maxwell fluid

Using the Lemma 5.1, we arrive at

ST EE G S S N

3 5 9 )
(45) =N 2 ki men n2(m* — 1)
e’} 5 e} 00
E , |ag| < \/EI{SILQ E E 5;
3 5y 1)
I=N+1 22 n=2K-141m=M n2(m

Finally, we get

OnK2L5 & _- 1
(46) Byl < —=1— Z Z 5072 2
8 an}C—1+1m:Mn (m N 1)
Therefore,
1
VOrK L [ & 1 1 ’
40 Bl Y 5 o)
n=2K-141 " m=M

We observe that ||E1,|| — 0 as K, M — oo. Thus, the accuracy of the
Chebyshev wavelet method improves as the number of collocation points N
increases. U

Theorem 5.3. If 6(n) is the exact solution and On(n) is the Chebyshev
wavelet solution for the temperature profile, then

5 o0 00 3
sy | < @( > Ly ﬁ) .
n=2K-141" m=M
Proof. From equation (28), we have
= n L—mn
(18) o =3 b (o)~ ) + (7).
Taking the asymptotic expansion of the equation (48), we obtain
= U L—n
(19) o =30 (a) ~ Fat) + (4.

The error estimate is given by,

| B2y | = [16(n) — On (n)l|

S b (atn) - %qz—@))‘.

i=N+1
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We have,
||E2N||2 = ’/OO< io: b; (%’(77) - _QZ ) Z b (q(n
T \i=N+1 I=N+1
—%ql<L>)>dn’
= S w > 0 [ (aw - L) (atn - Law)a
i= N+1 I=N+1
S 3 blalcs
i=N+11=N+1
where

w0 s [ (a0 La®) (atn - Latn) in

il

N~

Therefore, we obtain

oo oo

(51) |BaylP<Co Y bl > bl

i=N4+1  I=N+1
Using the Lemma 5.1, we arrive at

> VKL &
bi| < ———
(52) 1= 571*2 +1m=
o0 2 o0
TK1L>
> < YIIE P> > o
I=N+1 22 —ok— 1y mep N2 (m* —1)

Finally, we get

Con K25
(53) I 2 < BTAEE Zns

n=2K-14+1m=M

Therefore,

(54) |E2N|<VC2§§“L2< > Z )

n=2K~- 1+1 m= M

We observe that ||Ea,|| — 0 as K, M — oo. Thus, the accuracy of the
Chebyshev wavelet method improves as the number of collocation points N
increases. 0

6. RESULTS AND DISCUSSION

We have considered the heat transfer and boundary layer flow of an upper
convected Maxwell fluid over a stretching surface. We employ Cattaneo -
Christov heat flux model to analyze the heat transfer process. The solutions
of transformed momentum and energy equation along with boundary condi-
tions are obtained by means of Chebyshev wavelet collocation method. To
solve and analyze this analysis, we have used Matlab software to facilitate
the process. The velocity and temperature profiles have been obtained using
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128 (K =5, M = 8) collocation points.

TABLE 1. The values of —f”(0) and —6'(0) when S = 0.

B v Pr Mn Ec —f"(0) —6'(0)
0.1 1.026189  0.184191
0.2 1.051893  0.186769
05 02 1.0 10 1.0 1.126236 0.191226
0.8 1.196711  0.192470
1.0 1.241748  0.192221
0.0 1.051893  0.171139

0.2 1.051893  0.186769
02 05 1.0 1.0 1.0 1.051893 0.213079
0.8 1.051893  0.243091

1.0 1.051893  0.265262

0.5 1.051893  0.140159

02 0.2 1.0 10 1.0 1.051893 0.186769
2.0 1.051893  0.197212

3.0 1.051893  0.159070

0.2 1.051893  0.503436

02 0.2 1.0 06 1.0 1.051893 0.345103
1.0 1.051893  0.186769

1.5 1.051893 —0.011148

0.2 1.051893  0.503436
02 02 1.0 1.0 0.6 1.051893 0.345103
1.0 1.051893  0.186769
1.5 1.051893 —0.011148

In Table 1, we have listed the skin friction coefficient for no suction flow,
where we observe prominently that the variation of viscoelastic parameter
[ shows the variation in skin friction coefficient whereas, variation in other
parameters such as 7, Pr, Mn and Ec does not affect the skin friction coef-
ficient. At the same time, wall temperature gradient shows variations in 3
along with the variations in v, Pr, Mn and Ec.

TABLE 2. Comparison of local Nusselt number —6’(0) in the
case of Newtonian fluid (8 = v = a = S = 0) for different
values of Pr.

Pr  Wang Gorla Khan Malik  Siri(HWCM)  Siri(RK GILL)  Present

[63] [64] [65] [66] [22] [22] results
0.70 0.4539 0.5349 0.4539 0.45392 0.453930 0.453917 0.454447
2.00 0.9114 0.9114 0.9113 0.91135 0.911345 0.911358 0.911353
7.00 1.8954 1.8905 1.8954 1.89543 1.895489 1.895403 1.895400
20.0 3.3539 3.3539 3.3539 3.35395 3.353905 3.353904 3.353902

The observation in Table 2 reveals the following: For higher values of
Pr, the limiting case of present problem exactly matches with Khan [65],
Malik [66] and Siri [22] upto 4 decimal places for K = 5, M = 18 and
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L = 10. Whereas for small values of Pr we get, matching result for present
problem to previous scientist for lesser collocation points. Thus, when the
viscosity increases, we need more collocation points for converging solutions.

TABLE 3. The values of —f”(0) when Pr =1 and S = 0.

—-f"(0)
5 B=0.1 B =0.15 B=02
Siri [22] Present Siri [22] Present Siri [22] Present
results results results
RK HWQM CWCM RK HWQM CWCM RK HWQM CWCM
GILL GILL GILL

0.1 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214
0.4 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214
0.5 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214
0.6 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214
0.8 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214
1.0 1.02654 1.02653 1.02653 1.03940 1.03939 1.03939 1.05215 1.05214 1.05214

TABLE 4. The values of —6'(0) when Pr =1 and S = 0.

—0'(0)
5 B=0.1 B=0.15 B=0.2
Siri [22] Present Siri [22] Present Siri [22] Present
results results results
RK HWQM CWCM RK HWQM CWCM RK HWQM CWCM
GILL GILL GILL

0.1 0.58379 0.58379 0.58379 0.57983 0.57983 0.57983 0.57593 0.57593 0.57593
0.4 0.61014 0.61014 0.61014 0.60553 0.60554 0.60554 0.60101 0.60101 0.60101
0.5 0.61998 0.61998 0.61998 0.61516 0.61516 0.61516 0.61042 0.61042 0.61042
0.6 0.63029 0.63029 0.63029 0.62526 0.62526 0.62526 0.62031 0.62031 0.62031
0.8 0.65215 0.65215 0.65215 0.64673 0.64673 0.64673 0.64138 0.64138 0.64138
1.0 0.67551 0.67551 0.67551 0.66972 0.66972 0.66972 0.66400 0.66400 0.66400

In Tables 3 and 4, we have shown that our values match with the val-
ues of Siri [22] in the limiting case Mn = 0. Table 3 shows upto 5 digit
matching for less elasticity and for higher values of elasticity. In Table 4,
for lesser values of v as well as for higher values of 7 it matches upto 5 digits.

Table 5 displays the values of skin friction coefficient and Table 6 shows
the wall temperature gradient values for different values of S and 8 in com-
parison with the values of Siri [22]. It is clear from the Table 5 and Table
6 that the values of —f”(0) and —6'(0) are increases (in the absolute sense)
as the value of S increases.

The effect of elasticity on velocity and temperature profiles are shown in
Figs. 3 and 4. The elastic force disappears and fluid becomes the Newtonian
fluid if 8 = 0. Fluid shows purely viscous behaviour for a smaller elasticity
number i.e., for § < 1 whereas fluid acts as a elastically solid material for
B > 1. Due to this, for smaller value of 8 we can see that the larger mag-
nitude of velocity. In Fig. 3, we can see that velocity profile decreases with
increase in elasticity number 5. That is, for higher values of § the velocity
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TABLE 5. The values of —f”(0) for different values of 8 and
S when Pr =1 and v = 0.5.

—17(0)
S B=0.1 B=0.15 B=0.2
Siri [22] Present Siri [22] Present Siri [22] Present
results results results
RK HWQM CWCM RK HWQM CWCM RK HWQM CWCM
GILL GILL GILL
—1.0 0.59681 0.59764 0.59764 - 0.58640  0.58640 - 0.57485  0.57485

—0.6 0.73250 0.73351 0.73351 0.72619 0.72733 0.72733 0.72004 0.72106 0.72106
—0.3 0.86492 0.86440 0.86440 0.86510 0.86508 0.86508 0.86570 0.86568 0.86568
0.0 1.02654 1.02653 1.02653 1.03940 1.04003 1.04003 1.05215 1.05271 1.05271
0.2 1.15770 1.15770 1.15770 1.18362 1.18361 1.18361 1.21115 1.20962 1.20962
0.3 1.23124 1.23064 1.23064 1.26593 1.26542 1.26542 1.30242 1.30056 1.30056
0.6 1.48751 1.48644 1.48644 1.56384 1.56195 1.56195 — 1.64070 1.64070

TABLE 6. The values of —6'(0) for different values of 8 and
S when Pr =1 and v = 0.5.

Z0'0)
S B =0.1 B =0.15 B =02
Siri [22] Present Siri [22] Present Siri [22] Present
results results results
RK HWQM CWCM RK HWQM CWCM RK HWQM CWCM
GILL GILL GILL
—1.0 0.14996 0.16047 0.16047 — 0.16116  0.16116 - 0.16186  0.16186

—0.6 0.29747 0.29864 0.29864 0.29721 0.29825 0.29825 0.29673 0.29788  0.29788
—0.3 0.43848 0.43362 0.43362 0.43370 0.43161 0.43161 0.42215 0.42964 0.42964
0.0 0.61998 0.61998 0.61998 0.61516 0.61516 0.61516 0.61042 0.61061 0.61061
0.2 0.79129 0.79129 0.79129 0.78417 0.78417 0.78417 0.77714 0.77715 0.77715
0.3 0.89857 0.89891 0.89891 0.88998 0.89024 0.89024 0.88119 0.88164 0.88164
0.6 1.37559 1.37604 1.37604 1.35999 1.36049 1.36049 — 1.34471  1.34471

in boundary layer increases. Physically, for larger values of 8 viscous force
restricts the fluid motion as a result velocity decreases. Fig. 4 shows varia-
tion in fluid temperature with 5. As 8 increases fluid temperature increases
and thus elastic force promotes heat transfer of viscoelastic fluid.

Figs. 5 and 6 represents the effect of magnetic field Mn on velocity and
temperature profiles. Fig. 5 shows increase in magnetic parameter decreases
the velocity profile and the reverse effect is seen for temperature profile in
Fig. 6. This is because the increasing value of Mn tends to the increasing of
Lorentz force, which produces more resistance to the transport phenomena.

Fig. 7 displays the effect of viscous dissipation parameter which is given
by Eckert number Ec on temperature profile. Temperature profile increases
with increase in Eckert number. The effect of non-dimensional heat flux
relaxation time v on temperature profile is shown in Fig. 8. Temperature
profile decreases and hence the thermal boundary layer thickness decreases
due to the increase in 7.
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Fig. 9 depicts the temperature profile for different values of Prandtl
number Pr. In Fig. 9, we see that increase in Pr decreases the temperature
profile. This indicates that the temperature boundary layer is thinner for
large Prandtl number. Physically, as Pr grows, thermal diffusivity reduces,
resulting in decreased energy penetration ability due to thinner thermal
boundary layers. The effect of suction/injection parameter S on velocity
and temperature profiles is shown in Fig. 10. For increasing value of S, the
velocity and temperature profiles decreases.

—pf=01

=01

09 —p=02|] 09 -~ 5=03
08 B=05 | - 5=06

—§=08 —5=09
0.7 f=10]1 07 f=10
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FIGURE 4. Tempera-

profile for different ture profile for differ-

values of [ when ent values of 8 when

Mn = 1,S = 0. Pr =+ =Ec=Mn =

1,S=0.
1 T 1 T T T

I Mn=02 ——Mn=02
08 Mn=05 ] ——Mn=06
Mn=08] ] Mn=10
——Mn=10 ——Mn=15

——Mn=15|1
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FIGURE 6. Tempera-

profile for different ture profile for differ-
values of Mn when ent values of Mn when
g = 02, = 0. Pr=FEc=1,0=~=

0.2,S = 0.
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FIGURE 7. Tempera-
ture profile for differ-
ent values of Ec when
Pr = Mn = 1,6 =
v=0.2,S=0.

FIGURE 8. Tempera-
ture profile for differ-
ent values of v when
Pr=Ec=Mn=p§=
1,S=0.
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ture profile for differ- perature and velocity
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Ec = Mn = 1,8 = values of S when
vy = 02, = 0. Pr = Mn = Ec =
1,=v=0.2.

7. CONCLUSION

The study of boundary layer flow and heat transfer of an upper convected
Maxwell fluid past a stretching surface in the presence of suction/injection
has been carried out in this work. The partial differential equations govern-
ing the system are reduced to a set of ordinary differential equations along
with the boundary conditions using similarity transformations. The solution
of resultant equations is obtained numerically by the Chebyshev wavelet col-
location method. The effect of physical parameters such as Deborah number
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B, non-dimensional thermal relaxation time +, suction/injection parameter
S, Prandtl number Pr, Hartmann number Mn and Eckert number Ec is
analyzed. Following are the important findings of current study.

e The Deborah number 8 has the opposite effect on the velocity and
temperature profiles.

e The effect of the magnetic field Mn is the same as that of the Deborah
number (3 i.e., Mn decreases the velocity profile and has the opposite
effect on the temperature profile.

e As the value of Prandtl number Pr increases, the temperature profile
decreases and hence thermal boundary layer becomes thinner.

e Both velocity and temperature profiles are affected by variation in
suction/injection parameter S. There is a reduction in velocity and
temperature profiles for a large value of S.

e Increasing value of suction/injection parameter S, increases (in the
absolute sense) the value of f”(0).

e Variation of heat flux relaxation v has no effect on surface friction
coefficient f”(0).

e The increasing value of heat flux relaxation v increases (in the abso-
lute sense) the wall temperature gradient '(0) whereas the increas-
ing value of Deborah number § decreases (in the absolute sense) the
wall temperature gradient 6’(0).
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