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PARTITION SEIDEL ENERGY OF GRAPHS
SHASHWATH S SHETTY AND K ARATHI BHAT*

ABSTRACT. Let G = (V, E) be a graph and P = {V4,Va,..., Vi} be a k-partition
of V. In this article, we introduce the concepts of partition Seidel matrix Si(G)
and partition Seidel energy Es, (G), which depend on the underlying graph G and
the partition of the vertex set V of G. We obtain an upper bound and a few lower
bounds for partition Seidel energy, and we also obtain the partition Seidel energy
of some families of graphs. We conclude the article by exploring the partition
Seidel energy of some classes of double-nested graphs and nested split graphs.
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1. INTRODUCTION

Let G be a simple connected undirected graph with vertex set V(G) and edge
set E(G), which contains the unordered pair of vertices. Two vertices u,v € V(G)
are said to be adjacent (or non-adjacent) if wv € E(G) (oruv ¢ E(G)). By the
denotation u ~ v (or u » v), we mean that u is adjacent to v (or u is not adjacent
to v). The open neighbourhood of a vertex u in G is denoted by N(u) = {v €
V(G)| wv € E(G)}, and the closed neighbourhood of u is denoted by N[u] and is
defined as N[u] = N(u) U{u}. The degree of a vertex u is defined as the number of
vertices that are adjacent to the vertex u, and we denote it by d(u). For all other
basic terminologies and definitions, readers can refer to [27].

The adjacency matrix A(G) = (ai;) (or A) of a graph G, whose rows and columns
correspond to the vertices uy,us,...,u, of G and is defined as,

1, if Uq ~ Uj
QAij = 0 h .
, otherwise.

The concept of graph energy [11] was first introduced by Ivan Gutman in the
year 1978 and is defined as the sum of the absolute values of the eigenvalues of the
adjacency matrix.

The Laplacian matrix L(G) of a graph G is given by L(G) = D(G) — A(G), where
D(G) = Diag(d(uy),d(uz),...,d(uy)).

In the year 2006, Ivan Gutman and Bo Zhou introduced the concept of Laplacian
energy [12] of graphs, and they defined it as the sum of the absolute deviations of
the eigenvalues of its Laplacian matrix.

In 1966, Van Lint and Seidel [26] introduced the Seidel matrix of a graph G of
order n denoted by S(G), which is defined as S(G) = J — I — 2A, where A is the
adjacency matrix of the graph G, I is the identity matrix of order n, and J is the
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all-one square matrix of order n. Motivated by the energy of graphs, Haemers [13]
defined the Seidel energy Es(G) of G which is the sum of the absolute values of all
eigenvalues of its Seidel matrix.

A partial complement [9] of the graph G is a graph obtained from G by comple-
menting all the edges in one of its induced subgraphs. Partial complement energy
of a few classes of graphs has been discussed in the article [25].

The concept of L-matrix (partition matrix) [21] was introduced by E. Sampathku-
mar and M. A. Sriraj in 2014. Let G be a graph of order n with partition
P = {Vi,Va,...,Vi} of its vertex set. Then the L-matrix Py(G) = (a;;) of the
graph G with respect to the partition P is an n X n matrix whose rows and columns
correspond to the vertices of the graph, and the ij*" entry is given by,

2, ug, u; € V, and u; ~ uj, for some V;. € P
)1 u;, u; € V. and u; »~ uj, for some V;. € P
4ij = 1, u; € Vi,uj € Vs and u; ~ u; and v # s, for some V;., Vs epP’
0, otherwise

The partition energy [22] of a graph G with respect to the partition P was defined
by E. Sampathkumar and others in the year 2015 as the sum of the absolute values
of the eigenvalues of the L-matrix, Py(G).

Later in the year 2017, P S K Reddy and Ismail Naci Cangul defined the partition
Laplacian matrix [20] of a graph as LP(G) = D(G) — Pi(G) and also studied the
partition Laplacian energy of graphs. In [23], authors obtained bounds for partition
Laplacian energy and also partition Laplacian energy of some families of graphs.

Motivated by the partition energy and the partition Laplacian energy, we define
the partition Seidel matrix of G as Si(G) = J — I — 2P, (G). Similarly, the partition
Seidel energy of the graph is denoted by Eg, (G) and is defined as the sum of the
absolute values of the eigenvalues of the partition Seidel matrix Si(G).

In other words, Sk(G) = (¢i;) of the graph G with respect to the k-partition P
is an n X n matrix whose rows and columns correspond to the vertices of the graph
and ijt" entry is given by,

-3, usuj €V, and u; ~ uy, for some V. € P

3, u;, u; € Vp and u; »~ uj, for some V;. € P

cij =1 -1, u; €Vpu; € Vyand u; ~u; and r # s, for some V., Vs € P.
1, u; € Vy,uj € Vs and w; » uj and r # s, for some V., V; € P
0, ifi=y

A chain graph, or double nested graph (DNG), is a bipartite graph in which
the neighbourhoods of the vertices in each partite set form a chain with respect to
set inclusion. A chain graph G(Vi U Vi, E) can be partitioned into h non-empty
cells given by Vi = Vi1 U Vis U ... U Vi, and Vo = Vo U Vo U ... U Vo such
that N(u) = Vo U Vag U ... U V5 11, for any vertex w € Vy;, 1 <4 < h. If
m; = |Vi;| and n; = |Va|, then we write G = DNG(my,...,mp;n1,...,n;). DNGs
are characterised as being {2Ks, C3, C5}-free graphs.

The spectral properties of adjacency and the Laplacian matrix of chain graphs are
well studied. in literature [1,2,5]. Recently, some interesting properties of the Seidel
energy of a chain graph were discussed in [18].
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A split graph is a graph that admits a partition of its vertex set into two parts, V4
and Vs, such that V; induces a clique and V5 induces a co-clique. Every other edge,
called a cross edge, joins a vertex of V; with a vertex of Vo. A threshold graph, or
nested split graph (NSG), is a split graph in which the adjacencies defined by the
cross edges satisfy the following nesting property: Both V; and V5 can be partitioned
into h non-empty cells, say, V7 = V11UVioU. . .UV, and Vo = Vo1 UVaoU. . .UVyy, such
that N(u) = V31 UVia.. .UV} p_i11, for any vertex u € Vo, 1 < i < h. If m; = |V
and n; = |Va;|, then we write G = NSG(m1, ma,...,mp;n1,na,...,n). It is known
that threshold graphs are characterised as being {2K5, Py, Cy }-free graphs. For more
results related to chain graphs and threshold graphs, readers are referred to [3,4].
The spectral properties of the adjacency matrix of threshold graphs have been well
studied in [7,8]. Seidel spectrum of threshold graphs are discussed in [17]. The
authors of the article [28] showed that, with the exception of 1 and —1, the interval
(—v/2,/2) contains no Seidel eigenvalue of threshold graphs.

Section 2 discusses a few preliminary results related to the eigenvalues of the
partition Seidel matrix. Bounds on partition Seidel energy are given in Section 3,
and the partition Seidel energy of some families of graphs is discussed in the last
section.

2. PRELIMINARY RESULTS

Let G = (V, E) be a graph on n vertices and m edges, and P, = {V4,Va,..., V;}
be a k-partition of V. Let p; be the number of edges within V;,1 < i < k, and let ¢;
be the number of non-adjacent pairs of vertices within V;,1 < i < k. Let y; be the
total number of edges joining the vertices from V; to Vj for ¢ # j,1 < j < k. Also,
let z; be the total number of non-adjacent pairs of vertices (u;, u;) such that u; €
Viand uj € Vj,i #j, 1 <4,5 < k. Let

k k k k
(1) ni=Y i, ny = a, ny = 4 na=>
i=1 i=1 i=1 i=1

In this section we obtain few results related to eigenvalues of partition Seidel
matrix. The result which gives the multiplicity of the eigenvalues —3, —1,3 and 1 of
Sk(G) in the graph G based on its structure is given below.

Lemma 2.1. Let G be a connected graph on n vertices and P = {V1,Va, ..., Vi} be
a k-partition of its vertex set.

(1) If S C V; for some i, 1 < i < k is an independent set of size t, and for
every u;, u; € S, N(u;) = N(uj), then
e —1 is an eigenvalue of S1(G) with multiplicity at least equal to t — 1.
e —3 is an eigenvalue of Sk(G), 1 < k < n — 1 with multiplicity at least
t—1.
e —1 is an eigenvalue of S, (G) with multiplicity at least t — 1.
(2) If the graph induced by S C V;, for some i, 1 <i <k is a clique of size t,
and for every u;,uj € S, N[u;] = Nu;], then
e 3 is an eigenvalue of Sp(G), 1 < k < n — 1 with multiplicity at least
t—1.
e 1 is an eigenvalue of Sy, (G) with multiplicity at least t — 1.
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If the characteristic polynomial of Si(G) denoted by ¢p(G, x) is coz™ + 12"~ ! +
22" 2 4+ .-+ + ¢y, then the coefficients ¢; can be interpreted using the principal
minors of Sk(G). The first three coefficients of ¢p(G,x) is given in the following
theorem.

Lemma 2.2. The first three coefficients of pp(G,x) are,
a) co=1 b) c1 =0 ¢) cg = —(9n1 + Ing + n3 + na).

Proof. a) It follows directly from the definition of the characteristic polynomial.
b) It follows from the fact that trace of the partition Seidel matrix is equal to 0.
¢) We know that the coefficients ¢; of ¢p(G,x) and the i x ¢ principal minors of
the partition Seidel matrix are related as (—1)’c; = sum of all the i x i minors of

Sk(G).
1%y = Cii  Cij
= 1<Z:‘<k i i
<i<y<
= > e~ cicy
1<i<j<k
= Z —(eij)?
1<i<j<k
_ 2 2 2 2
= —[n1(=3)" + n2(3)" + n3(—1)" + na(1)’]
= —[9n1 + I + ng + ngl.
O
Lemma 2.3. Let sy, Ss2,...,s, be the eigenvalues of the partition Seidel matriz of
the graph G. Then,
Z s? = 2N,
i=1
where N = [9n;1 4+ 9ng + n3 + n4].
Proof. We have,
LR 9 e
i=1 i=1 j=1
=2 (ci;)+ > (cii)’
i<j i=1
=2 (cy)’
i<j
= 2[9n1 + 9Ing + ng + ngl.
O

Few results which are used in the subsequent sections are given below.

Theorem 2.4. [15] Let a = (a1,...,an) and b = (by,...,b,) be n-tuples of real
numbers satisfying

0<m; <a; <M
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and
0 <mo <b; < M.
Then,
n n n 2
2 2 n’ 2
Zai Zbl — a,—bi S —[MlMQ — mlmg} .
i=1 =1 i=1 3

Ay Ay
A Ay
spectrum of A is the union of spectra of Ag + A1 and Ag — Ay.

Theorem 2.5. [6] Let A = } be a 2 x 2 symmetric block matriz. Then the

Theorem 2.6. [16] Let 0 < a1 < ag < ... < a, be a sequence of non-negative real
numbers. Then

n k k 2 n k
Zari—n(n—l) <Hai> §<Z\/a_L> §(n—1)Zai+n<Hai>
i=1 i=1 i=1 i=1 i=1

For a given graph G, a partition D : Wy U Wy U ... U W} of V(G) is called an
equitable partition if every vertex in W; has the same number of neighbours in W},
say di;, for all 4,5 € 1,2,..., k. Then the k x k matrix with entries [d;;] is called the
divisor matrix of D.

In the theory of graph spectra, equitable partitions play an important role mostly
because of the following result.

Theorem 2.7. [10] Let M be a real symmetric matric with a divisor matriz D. Then
the characteristic polynomial of D divides the characteristic polynomial of M.

3. MAIN RESULTS

In the present section, we obtain some upper and lower bounds for Eg, (G). The
result connecting eigenvalues of Sp, (H1) and Sp,(H2) is given below.

Theorem 3.1. Let H; and Hs be two graphs of order n. Suppose that P, and

Py are k- partitions of vertex sets of Hy and Hy respectively. If s1,89,...,8, and
S, 8h, ..., s, are the eigenvalues of Sp,(H1) and Sp,(H2) respectively, then
n
> sis; <2VNN,
i=1

where N = [9(n1 4+ n2) + ng + n4] and N’ = [9(n} + nb) + nb +n}] and n1,n2,n3, ng
are defined for Sp,(H1) and nl,nh, nb,n}y are defined for Sp,(Ha2) as in Equation 1.

Proof. By Cauchy-Schwartz inequality, we have (> aibi)2 < (Z a?) (Z bf) By
setting a; = s; and b; = s, in the above inequality, we get

(St (524) (52)

< 4[9(ny + n2) + ng + ng][9(n] + nb) + nf + n))]

which implies ; sish < 24/19(n1 + n2) + n3 + na][9(n] + nb) + nfy + nf]. O

2

In all the results discussed below, N = [9(n1 + n2) + n3 + n4l.
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Theorem 3.2. Let G be a graph on n vertices and |si| > |sa| > ... > |sp|, where
si’s are the eigenvalues of the partition Seidel matriz, S,(G). Then,

2N 1
Eg, (G) > n\/T - §(|31| — |snl)?.

Proof. By substituting a; = |s;| and b; = 1 in Theorem 2.4,

k k 2 9
n
DT (}jszw) < 2 (Jsi] —Isal)?

i=1

HZISZI \51| — lsal)® < (Bs,(G))?

2
\/271[9(711 + ng) +ns + TL4] — %(‘Sﬂ — |Sn‘)2 < Egk(G)

O

Theorem 3.3. Let G be a graph on n vertices and P be the k-partition of its vertex
set. If D = |det(Sk(Q))|, then

2N +n(n—1)D% < Eg, (G) < \/(n—1)N +nDx.

Proof. By substituting a; = s7 in the inequality of Theorem 2.6, we get

- (f12) <(£0) coongan(fi)”

=1 =1 i=1

Theorem 3.4. Let G be a graph of order n and P be the k-partition of the vertex
set. Then,

Es, (G) < V2nN.

Proof. By Cauchy-Schwartz inequality, we have (> aibi)? < (> a?) (307). By
setting a; = |s;| and b; = 1 in the inequality, we get

(Fs,(G))? = (Zm) (Z|> (21>
ngu

< V/2n[9(ny + ng) + n3 + na).

IN

Es, (G) <

O

In the following theorem, McClelland-type [19] of an improved bound for the
partition Seidel energy of a graph is obtained.

Theorem 3.5. Let G be a graph of order n and P be the k-partition of its vertex
set. Then,

Es, (G) < VnN.
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Proof. We have,

0< D> (sil = Is;)?
i=1 j=1
n n
=0 (Isil® + 1s* — 2lsills51)
i=1 j=1

n n n n
=n)y s +n) | =2) lsil D Isl
i=1 j=1 i=1 j=1
=2nN - 2E% (G).
O

Theorem 3.6. Let G be a graph of order n and P be the k-partition of its vertex
set. Then,

Es, (G) < |s1] + /(1 —n)|s1]2 +2(n — 1)N.

Proof. We have,
2

n n 9
> sl > sl
i=2 i=2

n—1 — n-—1

IN

n 2 n

= <Z|Sil> (n=1)Y lsi®
=2 1=2

= (n—1Ds1]’ + (B3, (G) — |s1])* < (n = 1) Y _|sif®
i=1

= E% (G) —2|s1|Es,(G) + n|s1|* = 2(n — 1)N <0.

On solving for Eg, (G) we get

< 2|s1] + /4]s1]2 — 4(n|s1]2 — 2(n — 1)N)
- 2
from which the, result follows. (]

- Esk (G)

4. PARTITION SEIDEL ENERCY OF SOME FAMILY OF GRAPHS
In this section, we obtain partition Seidel energy of some classes of graphs.

Theorem 4.1. Let G be a reqular graph on n wvertices with regularity r (r > 0).
Then,

e 3n — 6r — 3 is an eigenvalue of S1(G);
e n—2r —1 is an eigenvalue of Sp(G).

From Theorem 2.1 the following result follows.

Theorem 4.2. If G = K,,, then Eg,(G) =6n—6 and Eg, (G) = 2n — 2.

475
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Proof. Note that 3(1 —n) is an eigenvalue of S1(G) with multiplicity 1 and 3 is an
eigenvalue of S1(G) with multiplicity n — 1.

Similarly, 1 — n is an eigenvalue of S,,(G) with multiplicity 1 and 1 is an eigenvalue
of S, (G) with multiplicity n — 1. Hence the result follows. O

The crown graph SO for an integer n > 3 is the graph with the vertex set
{ui,u2,...,upn,v1,02,...,0,} and the edge set {w;v;,1 < i,j < n,i # j}. The
crown graph SY is equivalent to the complete bipartite graph K, , with horizontal
edges removed.

We shall need the following theorem to obtain partition Seidel energy of the crown
and the cocktail party graph K, x2.

Theorem 4.3. Let G be a crown graph with the vertez set
{ui,u2,...,up,v1,v2,...,v,} and edge set {uv;,1 <14,j <n,i#j}. Then,

1. spec(S1(Q)) = (3 -9 =9 ;

n n—1 1
2. with respect to P = {U,V'} where U = {u1,ug,...,un}, andV = {v1,ve,..., 05},
-1 -5 2n—1 4n -5
spec(S2(G)) = (n 1 -1 1 1 ;

3. spec(Sn(G)) = <1 -3 2”3> .

n n—1 1

Proof. 1. The 1-partition seidel matrix of the crown graph G is given by S1(G) =
[3(J —I) 6I—-3J
61 —3J 3(J-1)
matrix of order n.
By using Theorem 2.5, the spectrum of S;(G) is the union of the spectrum
of 31 and 6J — 9I. The eigenvalues of the matrix 37 is 3 with multiplicity
n. The spectrum of 6.J — 91 can be obtained in the following way.

} , where J is the all-1 matrix of order n and I is the unit

-3-A 6 6 --- 6
6 -3—-X 6 --- 6
167 — 91 — M| = O ,
6 6 6 - —3—2AX
By performing R; — R; — Rit1, for i = 1,2,...n — 1, and R, —
R, —6Ry —12Ry — 18R3 — - -- — 6(n — 1)R,,—1 and on simplification we get

—9 and 6n —9 as the eigenvalues of above matrix with multiplicity n — 1 and
1 respectively.

2. Observe that S2(G) = {3(‘] -0 2-J

2I—J 3(J-1)|
By Theorem 2.5, the spectrum of S3(G) is the union of the spectrum of
2J — I and 4J — 5I. The eigenvalues of 2J — I are —1 with multiplicity
n — 1 and 2n — 1 with multiplicity 1. The spectrum of 4J — 51 are —5 with
multiplicity n — 1 and 4n — 5 with multiplicity 1.
J—-I 2I—-J
3. Su(G) = oI—J J—TIl
By Theorem 2.5, the spectrum of S, (G) is the union of the spectrum of I
and 2J — 3I. The eigenvalues of [ is 1 with multiplicity n. The spectrum of
2J — 31 are —3 with multiplicity n — 1 and 2n — 3 with multiplicity 1.
]
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Corollary 4.4. Let G be a crown graph of order 2n. Then,
e Fg (G)=18n—18;
e Fg,(G)=12n—12;
e Fg (G)=6n—6.

Theorem 4.5. Let G be a cocktail party graph of order 2n with the vertex set
{ui,ug, ..., u2,} and edge set {uzuj,1 <i# j < 2n,i#n+i}. Then,
-3 9 9 —6n
1. spec(S1(Q)) = ( n o on—1 1 ;
2. with respect to the partition P = {U,V}, where U = {u1,us,...,u,} and
V = {unJrla un+2: ceey u?n}7

spec(Sa(G)) = ( 1 5 1-2n 5- 4n>

)

n—1 n—1 1 1

n n—1 1

3. spec(Sp(Q)) = <_1 5 3= 2n> .
3(I—-J) 6I—-3J
6I —3J 3(I-J)
matrix of order n and I is the unit matrix of order n.
By using Theorem 2.5, the spectrum of S7(G) is the union of the spectrum of
—3I and 91 —6J. The eigenvalues of the matrix —31 are —3 with multiplicity
n and eigenvalues of 91 — 6J are 9 with multiplicity n — 1 and 9 — 6n with
multiplicity one.
3(I—-J) 2I—-J
2. 5(G) = [ 2(1— J) 3(1—J)|°
By using Theorem 2.5, the spectrum of S2(G) is the union of the spectrum
of I —2J and 5I — 4J. The eigenvalues of the matrix I — 2J are —1 with
multiplicity n — 1 and 1 — 2n with multiplicity one. The spectrum of 57 —4.J
is —5 with multiplicity n — 1 and 5 — 4n with multiplicity one.
I—-J 2I—-J
3. Sp(G) = [QI—J T_Jl
By using Theorem 2.5, the spectrum of S,,(G) is the union of the spectrum
of —I and 31 —2J. The eigenvalues of the matrix —I are —1 with multiplicity
n. The spectrum of 31 — 2J are 3 with multiplicity n — 1 and 3 — 2n with
multiplicity one.

Proof. 1. Observe that S1(G) = }, where J is the all-1

O

Corollary 4.6. Let G be a cocktail party graph of order 2n, n > 1. Then,
o Eg (G)=18n—18,
o Eg,(G) =12n — 12,
e Eg (G)=6n—6.
The spectrum and energy of k-partition Seidel matrix of chain graphs when h =

1 and 2 and for £ = 1,2,4,n are obtained below using the concept of equitable
partition.

Theorem 4.7. Let G = DNG(p;q) be a chain graph on n vertices with |Vi| = p,
and |Va| = q. Then,

1. spec(Si(G)) = (3(”1‘ ) -3 >

n—1

477
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2. with respect to P = {Vi,Va}, spec(S2(G)) = (/\fl /\122 n__62), where

Aot = & [Bn— 64 /0%~ Tdpg| . Aox = & [3n — 6 — /0% — Tdpa
3. spec(Sp(G)) = <n;1 -1 > .

n—1
Proof. 1. By Theorem 2.1, we can observe that G has —3 is an eigenvalue
of S1(G) with multiplicity at least n — 2. Other two eigenvalues can be
obtained through the equitable partition D : V3 UV, of V(G). The divisor
matrix corresponding to the 1-partition Seidel matrix of D is given by Ap =
[3(19 -1) =3¢
-3p  3(g—1
From Theorem 2.7, the result follows.
2. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-
sponding to the equitable partition D : V3 U V4, of V(G) is given by
_Be-1) —q
Ap = [ —p 3((1—1)]'

3. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-
sponding to the equitable partition D : V3 UV, of V(G) is given by

p—1 —q
Ap = .
P [—p q—l]

Eigenvalues of the divisor matrix are n — 1 and —1. Hence the theorem. O

)| Eigenvalues of the divisor matrix are 3(n—1) and —3.

Corollary 4.8. Let G = DNG(p;q) be a chain graph on n vertices with |Vi| = p
and |Va| = q. Then,

* L, (G) = 6n —6;

o Eg,(G) =|Xa1| + |A22| +3n —6;

e Eg (G)=2n-2.

Note 4.9. By putting p =1 and ¢ =n — 1 in Corollary 4.8, we get the expression
for the partition Seidel energy of the star graph Ki 1.

Theorem 4.10. Let G = DNG(mq, me;n1,ne) be a chain graph on n vertices with
[Vii| = m; and |Va;| = n;. Then,
1. spec(S1(Q)) = )\111 )\112 )\113 )\114 n _34 ,
where A1, A2, A3 and A4 are the roots of the polynomial,
A (12 = 3n)A3 + 27(2 — n)A2 + 27(4 — 3n + 4mymang + dmaning) X +
81(1 — n + 4mimang + 4manins);
2. with respect to P = {V1,Va}, spec(S2(G)) = 1 1 1 1 n_4
where Aa1, Aag, Aag and Aoy are the roots of the polynomial,
A 434 —n)A3 4 (54 — 270+ 8(my +ma) (n1 +n2)) A2+ (108 — 81n 4 48(m1 +
ma)(n1 4+ n2) + 12mymang + 12maning) A + 81 — 81n + 72(my + ma)(ng +
ng) + 36mimang + 36manine — 32mimsanine;
3. with respect to P = {Vi1 U Va1, Via U Vaa},

PYTEED D VDV -3
seesyen = (M P )

A21 A2 A2z Ay —3>
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where Ny, Nyg, Nog and Ny, are the roots of the polynomial,

A+ (12— 3n)A3 + (54 — 27n +8(m1 +n1) (n1 +n2)) A2 + (108 — 81n +48(m1 +

n1)(ma 4+ n2) + 12mimang + 12moning) A + 81 — 81n + 72(my + n1)(n1 +

na) + 36mimang + 36manine;

with respect to P = {Vi1, Via, Va1, Vao},
Al A2 M43 A

are the roots of the polynomial,

AN 43(4—n) N2+ (54— 27n+8myma +8nyna+8(my +ma) (n1 +n2)) A%+ (108 —

81n+48(mimg +ning) +48(my +ms2)(ny +ng) — 20mymeong — 16mimaong —

20mining — 16maning) A + 81 — 81n + 72(mymag + ning) + 72(m1 +mse)(ny +

ng) — 6OTTL17TL27L1 — 48m1m2n2 — 60m1n1n2 — 487TL27L177/2 + 32m1m2n1n2;

spec(Su(@)) = (M1 Arz Aus A T

where Ap1, An2, An3 and Apq are the roots of the polynomial,

M4 (4 = n)A2 + (6 — 3n)A2 + (4 — 3n + dmymang + dmanino) A + 1 — n +

dmimeonsg + dmaonins.

-3
n— 4> 5 where )\41, )\42, )\43 and )\44

1. By Theorem 2.1 we can observe that G has —3 as an eigenvalue of
S1(G) with multiplicity at least equal to n — 4. We can obtain the other
four eigenvalues through the equitable partition D : V31 U Vig U Vo1 U Voo of
V(G). The divisor matrix corresponding to the 1-partition Seidel matrix of
D is given by

3(777,1 - ].) 3m2 7377,1 73712

A — 3mg 3(mg —1) —3n1 3no

b= *3’”11 73m2 3(711 - 1) 3712
—3my 3ma 3nq 3(ng —1)

From Theorem 2.7, the eigenvalues of the divisor matrix along with —3 which
is of multiplicity n — 4 constitutes the spectrum.

. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-

sponding to the equitable partition D : Vi1 UViaU Vo UVag of V(G) is given
by

3(m1 — 1) 3m2 —nq —ng

o 3m1 3(m2 — 1) —ni »

AD - —ma —ma 3(%1 — 1) 3n2
—mi mo 377,1 3(77,2 - 1)

. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-

sponding to the equitable partition D : Vi1 U ViU Vo U Vg of V(G) is given
by

3(m1 - 1) mo —3TL1 —n9

An = mq 3(m2 — 1) —MNnq 37’L2

b —3m1 —mg 3(%1 - 1) n9
—my 3mg ny 3(n2 — 1)

. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-

sponding to the equitable partition D : Vi1 U Via U Vo UVay of V(G) is given
by
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3(m1 — 1) mo —nq —Nn9

A _ my 3(m2 — 1) —n1 no

b —ma —mgy 3(711 — 1) n9g
—m1 mo niy 3(’112 - 1)

5. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-
sponding to the equitable partition D : Vi1 UVia U Vo UVay of V(G) is given

by
mi1 — 1 mo —Nnq —ng
mi mo — 1 —ni no
Ap =
—mi —mgy ny — 1 n9g
—m mo ni nog — 1

O

Corollary 4.11. Let G = DNG(my, ma;ny,ng) be a chain graph on n vertices with
[Vii| = m; and |Vi;| = n;. Then,

Es (G) = |A1] + A2 + [M3| + [A1a] +3n — 12;

Es,(G) = |Aa1| + [A22] + | Aas| + [A2a] + 3n — 12;

E§, (G) = || + [Xog| + [Ngg| + [Aoy| +3n — 125

Es,(G) = |Aa| + |[Aa2| + [Maz| + [Aaa| + 3n — 12;

ESn(G) = |)\n1| + |)\n2| + |>\n3| + |)\n4| +n—4.

Note 4.12. By putting m1 = 1 and nqy = 1 in above result, we get the expression
for the partition Seidel energy of the bi-star graph, B(na, ma).

The spectrum and energy of k-partition Seidel matrix of NSG(p;q) and
NSG(ma, ma;ny,ng) for k =1,2,4,n are discussed below.

Theorem 4.13. Let G = NSG(p;q) be a threshold graph on n vertices with |V1| = p,
which induces a clique and |Va| = g, induces a co-clique. Then

(3 =3 Aun A
1. spec(S1(Q)) = (pl -1 1 1 >,

where Ay = 3 [(q—p) +(p—2)2+ ¢ —|—6pq—4CI}

andm:%{(q*p)*\/(p*2)2+q2+6pq*4q},

Aa1 A2 3 -3
1 1 p—1 g—1)’

where, Ayy = & [3((] —p)+/(3p—6)2 + 9% + 22pq — 36q} ,
Ao =4 [3(a—p) — /(30— 6)% + 07 + 23pq — 364
_ >\n1 /\n2 1 -1
3. spec(Sn(G)) = ( 1 1 p—1 q— 1)
where Ap1 = & [(q—p)—&-\/(p—2)2+q2+6pq—4Q} ;
An2 = 3 [(q—p) - \/(p—2)2+q2+6pq—4q} :

Proof. 1. By Theorem 2.1, we can observe that G has —3 as an eigenvalue of
S1(G) with multiplicity at least ¢ — 1 and 3 as an eigenvalue of S1(G) with
multiplicity at least p — 1. Other two eigenvalues we can obtain through the
equitable partition D : V1 UV; of V(G). The divisor matrix corresponding to

2. with respect to P = {V1,Va}, spec(S2(G)) = (
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31-p) =3¢
=3p  3(¢—-1)J"
Eigenvalues of the divisor matrix Aj; and Ai2, along with —3 which is of
multiplicity g—1 and 3 which is of multiplicity p—1 constitutes the spectrum.
2. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-
sponding to the equitable partition D : V3 UV, of V(G) is given by
_130-p)  —q
Ap= 1" 3g-)
3. The proof follows by Theorem 2.1 and by noting the divisor matrix corre-
sponding to the equitable partition D : V3 UV, of V(G) is given by

_|1=-» —q
=[]

the 1-partition Seidel matrix of D is given by Ap = [

O

Corollary 4.14. Let G = NSG(p; q) be a threshold graph on n vertices with |V1| = p
and |Va| = q. Then,

i E51(G) = |>\11| + |)\12| + 3n — 6;

o Es,(G) = [Aa1| + [Aa2| + 3n — 6;

o Bs (G) = [An1| + | An2| +n —2.

Theorem 4.15. Let G = NSG(my,ma;n1,na) be a threshold graph on n vertices
with the graph induced by V1 a clique and the graph induced by Vo a co-clique. Then,

A1 A2 A3 A 3 -3
L spec($1(G)) = ( 11 1 1 mi+me—2 n1+n2—2>’
where A1, A2, A3 and A4 are the roots of the polynomial,
2 -+ 3(TTL1 +mo —n1 — 7”L2)>\3 + 9(n —-2-— 2(m1 + mg)(nl + ng))AQ + 27(”1 +
ng —my —mo — dmimaong + dmaoning) A + 81(1 — n+ 2(my +mse)(n1 + ng) —
dmimaong — dmaning + 8mimanine);
2. with respect to P = {Vq,Va},
A21 A2 A2z Ay 3 -3
spec(5(G)) = ( 1 1 1 1 mi+me—2 m +n2—2> ’
where o1, Ao, Aoz and Aoy are the roots of the polynomial,
M +3(my +mg —n1 —n2) A2+ (9n — 18 — 10(my +ma)(n1 +n2)) A% +3(9n1 +
9y — 9my — Ima — dmymang + dmoninz) A + 81 — 81n + 90(my + me)(ny +
ng) — 36mymang — 36maning + 40mymanine;
3. with respect to P = {Vi1 U Va1, Via U Vao},
li !/ ! li
seetsyan = (M )
where Aoy, ooy Ny and Ny, are the roots of the polynomial,
A4 3(my +ma —ny —no) A2 + (=18 + 9n + 8myma — 18myny — 10mang —
10m1n2718m2n2+8n1n2))\2+(727m1727m2+48m1m2+27n1 —48mimeoni+
27ng —60mymaong —48n1ns +48mining+60maening)A+81—81n+72mimo+
162mini + 90maoni — 144mimony + 90mine + 162mone — 180mimens +
72n1no — 144minine — 180manine + 328mimanine;
4. with respect to P = {V11, Via, Va1, Vao},
M1 M2 A3 A 3 -3
spec(54(G)) = ( 1 1 1 1 mp+me—2 n +TL22>’
where Aq1, M2, A3 and Ayq4 are the roots of the polynomial,
A+ 3(my +ma —nyp —n2) A3 + (9n — 18 — 10(my + ma)(ny + ng) + 8ning +
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8m1ma) A + (48myma — 48n1ng + 2701 + 2Tng — 27my — 27ma — 32mymans +
32maning — 28mymany + 28mining) A + 81 — 81n + 7T2myme + T2ning +
90(m1 + mg)(nl + TLQ) — 84mimeony — 84mininge — 96manine — 96mimens +
104m1m2n1n2;
>\n1 /\n2 )\n3 )\n4 1 -1 >

1 1 1 1 mi+me—2 ni+nyg—2)°
where A\p1, An2, Ans and \pg are the roots of the polynomial,
A (my +ma —np —n2)A2 + (n — 2 — 2(my + ma)(ng + n2))A? + (ng +
ng —my — mg — dmymang + dmonino) A+ 1 — n 4+ 2(m1 + mo)(ny + n2) —
dmimeong — dmoning + 8mimsanine.

1. By Theorem 2.1, we can observe that G has 3 as an eigenvalue of
S1(G) with multiplicity at least m1 + mo — 2 and —3 as an eigenvalue of
S1(G) with multiplicity at least ny + ne — 2. We can obtain the other four
eigenvalues through the equitable partition D : Vi1 UViaU Vs U Vs of V(G).
The divisor matrix corresponding to the 1-partition Seidel matrix of D is
given by

3(1 - ml) —3m2 —377,1 —3TL2

An = —3m1 3(1 — mg) —377/1 3n2

D= —3m —3my  3(ni—1)  3ng
—3m1 3m2 3711 3(712 — 1)

The four eigenvalues of the divisor matrix A\11, A12, A13 and A4 along with —3
which is of multiplicity n1 +ns — 2 and 3 which is of multiplicity mj +mo — 2
constitutes the spectrum.

. The proof follows by Theorem 2.1 and by noting that the divisor matrix

corresponding to the equitable partition D : Vi1 U Via U Va1 U Vg of V(G) is
given by

3(1—mq) —3ms —nq —nN9

. —3m1 3(1 — mg) —nq n9

AD n —m —ma 3(7?,1 - 1) 3ng
—mi mo 3n1 3(n2 — 1)

. The proof follows by Theorem 2.1 and by noting that the divisor matrix

corresponding to the equitable partition D : Vi1 U Via U Vo U Vag of V(G) is
given by

3(1 - ml) —mg 7377,1 —n9

A — —mq 3(1 —mg) —nq 3n9

b= 73m1 —mo 3(711 — 1) no
—my 3ma n 3(ng — 1)

. The proof follows by Theorem 2.1 and by noting that the divisor matrix

corresponding to the equitable partition D : Vi3 U Via U Vo U Vg of V(G) is
given by

3(1 — ml) —ma —nq —ng
o —ma 3(1 - mg) —nj no
AD - —mi —my 3(TL1 — 1) n9

—mi mo ni 3(712 - 1)
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5. The proof follows by Theorem 2.1 and by noting that the divisor matrix
corresponding to equitable partition D : Vi3 U Vig U Va1 U Vg of V(G) is

given by
(1 — ml) —mgy —nq —nN9
AD _ —ma (1 — mg) —nNn1 no
—m —mgy (n1 — 1) n9
—mi mo ni (ng — 1)

d

Corollary 4.16. Let G = NSG(m1, ma;ni,n2) be a threshold graph on n vertices.
Then,

E51(G) = |>\11| + |)\12| + |A13| + | A1a| + 3n — 12

ES2(G) = |)\21| + |/\22| + |/\23| + |)\24| +3n —12

B, (G) = [Ny | + [Mya| + [Aog] + [Noy| + 30 — 12

Es,(G) = |Aa1| + |Ma2] + [Aas| + | Aaa] +3n — 12

Es,(G) = [An1] + [Anz2] + [Ans] + [Ana| + 71 — 4.

Conclusion. In this article, we have obtained several bounds for the partition Seidel
energy of graphs with k& partitions. Also, the expression for partition Seidel energy
of some families of graphs for a given partition is obtained. Recently, motivated by
the nesting property of the extremal graphs (chain and threshold graphs), a partial
chain graph (PCG) [14] is defined. Also, by extending the concept of nesting from a
bipartite graph to a k-partite graph, the authors of the article [24] defined a k-nested
graph (KNG). One can try to obtain partition Seidel energy for PCG and KNG.
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