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ON CONVERGENCE PROPERTIES
ASSOCIATED WITH EULER TYPE
POLYNOMIALS

ERKAN AGYUZ

ABSTRACT. The aim of this paper is to construct a generalization of
Szasz-type linear positive operator by using generating function method.
The operator presented in the study includes the generating function of
Adjoint-Euler polynomials. Many properties of this operator are ex-
plored. Moreover, the fundamental convergence properties of this op-
erator are given. Applying this operator to the generating function of
adjoint-Euler polynomials, some new formulas and relations have been
derived. We also prove Voronovskaya and Griiss-Voronovskaya type the-
orem for this operator. Finally, some numerical results of this operator
with convergence properties associated with the rate of modulus are
presented.
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1. INTRODUCTION

The generating functions have numerous uses in a variety of disciplines,
including analytical number theory, practical analysis, and CAGD, among
others. Generating function of a polynomial family gives some useful results
such as evaluating certain integrals, using a differential recurrence relation
or a pure recurrence relation.

Let (an) = (ao,a1,...) be an arbitrary sequence. Generating function of
(ap) is defined as follows [7]:

[o.@]
a(x) = Z anz™.
n=0

Many researchers obtained useful and important results for polynomial
families with the aid of generating functions. Recently, Simsek obtained
generating function and useful results for ¢-Eulerian type polynomials and
numbers and also constructed combinatorial sums and identities with well-
known special polynomials such as Euler polynomials (c¢f. [27], [28]). In
addition, he studied and gave a new family of Appell polynomials which are
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related to Euler and Frobenius Euler polynomials (¢f. [29]). Kilar and Sim-
sek obtained useful and important results for many kinds of special poly-
nomials and numbers based on generating functions and their functional
equations (cf. [16]). Kucukoglu et al. derived generating functions for new
families of special numbers, and polynomials and obtained functional equa-
tions, relations and derivative formulas (c¢f. [19]). Kucukoglu and Simsek
constructed a useful algorithm in order to compute some numerical values
related to the k-ary Lyndon words which included the generating function of
Apostol Bernoulli numbers and also found generating function for Hermite
type numbers (cf. [20], [21]). Alkan and Simsek investigated some properties
of generalized Bernoulli numbers and polynomials by using a fixed periodic
group homomorphism (cf. [2]). Szablowski constructed a new multivariate
generating function with the aid of Chebyshev polynomials of the first or
second kind (¢f. [35]). Luo and Reina investigated generating functions
of Pollaczek and other related polynomials and gave a new integral rep-
resentation for these polynomials (cf. [22]).Costabile et al. obtained some
important and interesting results including generating functions about poly-
nomials sequences (c¢f. [9]). For more informations about special numbers
and polynomials, we refer to works (c¢f. [17], [23], [30], [31], [32], [33], and
[34] ).

Approximation theory is one of the key areas in which generating func-
tions are applied. In 1950, Szdsz provided the following generalization of
Bernstein polynomials on an infinite interval:

IEEEN O

where s, = e 8% (cf [36], [24]).
In 1969, with the help of Appell polynomials, Jakimovski and Leviatan
presented a generalization of Szdsz operators at:

) = S Sty (1),

where py(z) are called as Appell polynomials and g(z) = > 5, axz” is an
analytic function (cf. [15]).

In 2012, According to Varma et al., the Brenke-type polynomials are
included in the linear positive generalization of Szasz operators as follows:

1 > k
Ln(f,x) = A(1)B(nz) kzopk(m?)f (;) ;

where A(y) and B(y) are analytic functions that are a component of the
Brenke type polynomials’ generating function (cf. [37]).
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In 2016, Atakut and Biiyiikyazic1 [5] established a generalization of the
operators of the Kantorovich-type including the Brenke-type polynomials,
and explored approximation properties of these operators at the following:

k+1

Ly (£.2) = Ty Zpk ane) [ syt

Bn

where pi(x) are Brenke type polynomials and A and B are analytic functions
(cf. [5]):

In 2022, Using the generating function of Apostol-Genocchi polynomials
of degree , Menekse Yilmaz [39] introduced and investigated the approxi-
mation characteristics of a linear positive operator as follows:

(o,B,m) _ —(ntwz 2 NG g]g‘((n—i—,u)x,ﬂ) k+m
AP (f ) = e n (ﬁeH) % a )

where Apostol-Genocchi polynomials are referred to as Gp'(x, ) and their
generating function is defined to be as:

(1) Zg 8) 5 (1] < llog — 1),

(cf. [39]). Costabile et al. studied many Szész type operators involved Shef-
fer polynomials and investigated approximation properties by using classi-
cal techniques and compared the rate of convergence of these operators (cf.
[10]).

Using generating functions, the following equation are used to define the
Euler polynomials:

1 EOO Bl = —2 et
(1) k(x)g = e,
k=0

el +1

(cf. [8]-[17)).

By using the generating function of Euler polynomials, many useful re-
sults are obtained about concering Euler polynomials in various fields such
as mathematical analysis, analytic number theory ,and combinatorics. For
example, Chen et al. obtained some new identities and properties by con-
structing second-order non-linear recursive polynomials (cf. [8]). Kim et al.
constructed some new computation formulas which included Euler numbers
and polynomials with the aid of its generating function (cf. [18]). Kilar
et al. derived some new identities and relations related to trigonometric
functions and generating functions for Euler polynomials (¢f. [17]).

We give definitions, lemmas and theorem that enables us to obtain results
in the sequel.
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Natalini and Ricci [25] introduced the adjoint Appell-Euler polynomials
by using Sheffer polynomial sets and investigated their important proper-
ties such as recurrence relations, generating function’s ordinary and partial
differential equations.

The Adjoint-Euler polynomials are defined using their generating function
as follows:

> N tk et +1 "
) S aula) = e
k=0

9 )
(cf. [25]).

Remark 1. It is clear that the Adjoint-FEuler polynomials are equal to the
Euler polynomials of degree —1 as follows:

Ey V(@) = &),
(cf. [16], [17], and [25]).

By applying Taylor expansion, we give some adjoint-Euler polynomials as
follows:

1
£9(x) Il'2+l‘-|-§.

_ 3 3 5 3 1
E3(x) == +2:E +2x+2.

Throughout this study, the results are given by assuming that C0,1),
C[0,00), Cg[0,00), and Cpg2[0,00) denotes respectively the space of uni-
formly continuous function in [0, 1), the space of uniformly continuous func-
tion in [0, 00), the space of uniformly continuous and bounded function in
[0,00), the space of uniformly continuous, bounded, and second-order dif-
ferentiable function in [0, c0), and the space of locally bounded and second-
order differentiable function.

The C7[0,00) is defined to be as:

~

(z

X

~—

C'[%[O, o00) = {f € Cp[0,00) : limy—00 =k < oo},

—

b

where p(z) = 2® 4+ 1 is an increasing function on [0, o), the B,[0,c0) is set
of real-valued functions on [0, 00) such that |f(z)| < Mp(x) where M is a
constant. Besides, the C,[0, 00) is set of f € B,[0,00) where f is continuous.

The modulus of continuity is a mathematical tool for measuring the speed
of convergence or divergence of a sequence. Now we give definitions of both
moduli of continuity and related concepts.
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Definition 1.1 (¢f. [11], P. 40) Assume that the function f is uniformly
continuous on [0,00) and § > 0. Following is the definition of the function
f’s modulus of continuity by w(f,d):

(3) w(f,8) = sup|f(z) — f(y)l,
where z,y € [0,00) and |z — y| < 4.
The following relation thus holds for any 6 > 0 and each z € [0, 00):
1: —
() ) = s =) (252 + 1)

0
(¢f. 6], [11]).
Definition 1.2 (¢f. [26]) The continuity’s second-order modulus is given
as below:

(5) W¥(f.0) = sup sup |f(z+h)—2f(z) + f(z —h)|,
0<h<d z€[0,00)

where f € Cp[0,00) and § > 0.

Definition 1.3 (¢f. [11], P. 51) Lipi(a, K), 0 < a < 1, denotes the class
of functions that verify the inequality w;(¢,0) < Ko for all ¢ > 0 with
positive K. Next, we have

(6) By (¢52) = 6 (2)] < Koy (2).
Definition 1.4 (¢f. [12]) The Peetre’s K-functional is provided at the
following equation:

(7) K(f;0) = inf{g € C§[0,00) : [|f — gllcy +dlgllcz }
where
C%[0,00) = {g € Cp[0,00) : ¢', ¢" € C[0,0)}
and
lgllez, = llgllics +1lg'lles + 19" lcs-
The following inequality is obtained between Peetre’s K-functional and the

second modulus of continuity for any constant M which is independent of f
and §:

K(f;6) < M{wa(f; V8) +min(1,6)| fllcs
(cf 4], [3], [12)).

The moment and central moment functions are mathematical tool that
helps in constructing the Korovkin-Bohman theorem to examine the uniform
convergence of an operator.

Definition 1.5 (¢f. [14]) Let L, (f,x) be a linear positive operator. The
r-th order moment of L, (f,x) is given at the following:

er(t)=t",
where 7 = 0,1,2... and t.
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With the aid of Definition 1.5, the r-th order central moment function of
L, (f,x) is defined as follows:

L,((e1 —epz)",x) := L,((t — z)", x).
Theorem 1.6 (cf. [11]) If A, : C[0,1] — C]0,1] is a sequences of positive
linear maps, then
lim ||A,f; — fil| =0,
n—oo
where f;(t) =t for i = 0,1,2. Then for every f € C[0,1] we have
lim [|A,f — f|| = 0.
n—oo
To help of constructing Korovkin’s theorem we define a set at the follow-
ing:

E= {f |z € [O,oo),mli_{go 1f_|(_$322 exist}.

Euler-type polynomials have many applications in combinatorics and ap-
plied sciences, especially in analytic number theory. Positive linear operators
using special polynomials with generating functions under appropriate con-
ditions are available in the literature. The aim of this paper is to study
Adjoint-Euler polynomials in order to combine both positive linear opera-
tors and the method of generating functions.

The remainder of this study is structured as follows:

In section 2, we establish our operator with the aid of generating function
of Adjoint-Euler polynomials. By using lemmas and definitions in section 1,
we firstly find moment and central moment functions. Secondly we show that
our operator is uniformly convergence by using Korovkin’s theorem. And
then, we look into a variety of convergence characteristics for our operator,
such as the second-order modulus of continuity, the Lipschitz class, the
Peetre’s K-function, and the modulus of continuity. Finally, we construct
Voronovskaya type and Voronovskaya-Griiss type theorems for our operator.

In section 3, we present some numerical examples by calculating the rate
of convergence for the operator by using the modulus of continuity.

2. MAIN RESULTS

In this part, we first define operator and give moment and central mo-
ment functions. Using moment functions, we present the Korovkin-type
approximation theorem.

Using the adjoint-FEuler polynomials’ generating function for ¢ = 1 and
x — nz, the following equation yields the operator:

() B (f,2) = (6%1) e-m;ék(kr;m)f (g) |

in which x > 0 and =z € N.
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By using Eq. (8), we give moment and central moment functions for

EL(f, ).

Lemma 2.1. For all x € [0,00) and n € N, we get

(9) Ey(eo(x), x) =1,

(10) En(ei(z),z) =z + net 1)

and

(11) Ef(es(z),2) = 2% + (3:1—11> %+ (251) %

Proof. Utilizing derivatives operator, we obtain the first and second deriva-
tive of adjoint Euler polynomials from the generating functions of Adjoint-
Euler polynomials as follows:

b _ 1.
Zsk kt et +a(eh +1)].
Therefore,
fok 1) _%etx (et(x+1)2+x2).

It is simple to see from the definition of E}(f,z) for f(x) =

=0
Let f(z) = z. For t = 1 and n — nz, the above equation reduces to the
following equation:

k=0
2 1
= (e—l—l)e_an “le + nz(e+1)]
4
=r+—-.
n(e+1)

Let f(z) = 2% For t = 1 and n — nx, we also get
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Bifea(a).a) = () e Ky S
— () e (o B2 + T, B4

— 2 Jet+1 )\ = 2¢e |\ 1
=T +<e+1>n+<e+1)n2'

Thus the desired results are obtained. O
By using the same method as Lemma 2.1, we obtain

6e+1 o, 1le+2 8

EI* — 3
r(es(x),z) = x° + (e—i—l)nw + (e+1)n2x+ (et Dnd’

and
10e+6 5 16e—11 ,  10e+ 26 2e +1

E* — 4 .
nlea(@),z) = a7+ e+ n" * e+ 1)n2" * (€+1)n3x+ (e + L)nt

Lemma 2.2. Let x € [0,00). According to Lemma 2.1, we obtain the fol-
lowing equalities.
e

(12) Ea((e1 — eow), ) = et D)

5e +1 2e

(13) EX((e1 — epx)?, x) = ot 1)n$ + Cr

—16e — 19 , 10e — 6 + 2e+1
x x :
(e + 1)n2 (e +1)n? (e + 1)n*

Proof. The proof of Eq. (12) and Eq. (13) can be found in [1]. We have
used the linearity property of E} to find

(14) Ey((e1r —eox)!,z) =

Ef((e1 —eox)t,z) = Ei(s*,x) — 4zEj(s3,2) + 622 E5 (%, 2) — 42> EX (s, 2) + 2 B (1
Using the results in Lemma 2.1 and basic mathematical operations, the
following result is obtained:
—16e — 19 2, 10e — 6 n 2e+1
T x .
(e+1)n? (e+1)n3 (e+ 1)nt

Hence, the desired results are obtained.

E’((e1 — eox)4,a:) =

n

g

Some properties of central moment functions of E*(f, ) are given by the
following lemmas:
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Lemma 2.3. With respect to the operators E}(f,x), we get

.73
E;kl((el - 6[)1'),1’) < y
n
and
" 3.92x 1.46
E’((e1 — 601‘)2,IL’) < - + P

Lemma 2.4. The following expressions hold true:

(15) nl;ngo nE’((e1 — epx),x) = e i 0’
and
1

By using Lemma 2.1 and Theorem 1.6, we give Korovkin’s theorem for
E*(f,x) at the following theorem:

Theorem 2.5. Let f € [0,00] = C[0,00] N E.

(17) lim [|E;f ~ f]| = 0.
Proof. The proof of this theorem was announced in [1]. g

The key tool used in the theory of approximation by positive linear op-
erators is the notion of modulus of continuity. For giving quantitative esti-
mates, this notion works well. For determining the rate of convergence in
this section, we employ both the standard and second moduli of continuity.

We will give the following theorem without proof, since it will be used to
obtain the numerical examples in the third chapter. See [1] for the proof of
theorem.

Theorem 2.6. Assume that f belongs to set E and is a uniformly contin-
uous function on [0,1]. Then, there is

(18) By (f32) — f] < 2w (f;\/En <(S—ﬂf)2;w)>7

where the function’s continuity modulus, w, is used.

The following theorem satisfies a prediction for the error of the operator
E’(f,x) to a function f belonging to the Lipschitz class of order by (5).

Theorem 2.7. Let f be in Lippr(a). For x > 0, here are
(19) By (f52) = f ()] < M6 (),
where 6*(z) := \/EX((s — x)?,x).
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Proof. We obtain the following from E’’s monotonicity properties:

(20) By (f2) — f (@) < MER(|s — 2| 2).

By applying the Holder inequality, one can infer from (20)

(21) B (fie) = f ()] < M(E}((s — 2)%2))% .

So, the theorem’s proof is finished. O

Theorem 2.8. The following statement is true for any f € Cp(0,00) and
z € (0,00):

(22) B (fi2) — f (2)] < 2K(f; An(2)),
where \p(x) = ﬁ + eJrLlTQLT—El

Proof. Let h € C%(0,00). Using the linearity property of E} operators and
Taylor’s expansion, we are able to

(23)
E, (fiz) = f(x) = fl(2)E, ((s — x);2) +

By using Lemma 2, we have

F'0) g

9 n((s_fE)Q;x)ﬂ?G(ﬂ?,s).

1 e(n+1)

@) 1B - fO12 (5 + S Il

On the other hand, if we apply Lemma 2.1 and expression (24), we obtain

(25) |E, (fiz) = f (@) < B, (f = s @) |+|Eg (hsx) — b (@) |+] f(2) — h(z)]
<2|f = hllego,00) + [Er (B x) — b (2)]
< 2(1f = hllepo,00) + An(@)]ll 2 (0,00))-

In the equation above, if we pick the infimum on the right-hand side, we get
over all h € C%(0,00); The intended result is attained as follows:

(26) 1By (F52) = f ()] < 2K(f; An(2).

Theorem 2.9. For E} (f;x), if f € Cp(0,00), then we have

@) 1B (i)~ @) < Cuntsi Vot 4o (£ (55 ) ).

where C is constant and

(28) vale) = LB (s — )% 2)) + (m) |
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Proof. Let us define an operator F,, by

. e
@) R =B~ ] (S o) + )
We deduce from Lemma 2.2
(30) Fn(s —x;2) =0.

By the Taylor formula with integral reminder term for h € C%(0,00), we
can write

b
(31) h(s) = h(z) + (s — )b/ (z) + / (s — u)h" (u) du.

By using Eq. (30) and Eq. (31), we have

|F(h,z) — h(z)| = ‘Fn </:(s —w)h' (u) du; x)

< ‘E,’;(f, ?) (/:(s ) () du; x>

n /xﬁﬂ (ﬁ tz— u> h"(u)du]

< {E5((er — eon))® + <ﬁ + )21 e (0,00)
<

< 4 (@)lIhllcz, 0 00y

Considering the meaning of the E operator, using Lemma 2.1 and the above
inequality, we determine that

1Ea(fix) = f(@)] < |Fulf = hsz) — (f = h)(2)]

4 | Falhiz) — h(z)| + f(ﬁ +a) — f(z)
< A1~ Bllog o + n @l 000 + 0 )

Using the inequality stated above and accounting for Definition 1.4, We get
to the conclusion that

Ei(fi0) = @] < K (fim(@) +olfs )
< Cunlf: Vou@) +w (f; m) .
The proof is finished with this. O

Now, we first present an altered version of Voronovskaya’s asymptotic
formula for Bernstein operators from 1932 in this section ([38]), and we
then present the Griiss type Voronovskaya theorem (cf. [13]).
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Theorem 2.10. Let f € Cg. We have;

(32) lim n(E5(f,z) - f(z) = —— f'(x) +

n—o0 e+1

for each fized x € [0, 00).

Proof. We use the Taylor formula for a fixed point xg € [0,00). For all
t € [0,00), we give

(33) f(t) — f(xo) = f'(0)(t — z0) + %(t — 20)* " (z0) + g(t, 20)(t — w0)?,

where g(t, zo) is a function that belongs in the space Cg[0, 00) and lim;_,, g(t; o) =
0. After applying the linear operator E} to the Taylor series of f, we give

nlE (fizo) — f(20)] = f'(xo)nEy (x — o3 20)
1 * *
+ if"(xo)nEn((t — x0)% w0) + nEy (g(t, x0)(t — 20)*; 20).
Cauchy-Schwarz inequality has allowed us to

(34)  Bn(g(t,zo)(t — z0)* 20) < v/ (B3(g2(t,20))) (B ((t — wo)%; 20)).

One has from central moment function that

—16e — 19
. 20y 4, — 2
(35) nlggon (E;(t — )™ o) 1 Yo
Since for the function g(z,x¢) = h?(x;z0), * > 0 we have g(x,10) €

Cgl0,00) and limg_,, g(z,20) = 0. Then it follows from Theorem 1(Ko-
rovkin) that

(36)
nILHgO(EZ(hQ(t»wo)’ZEO); Tg) = nggo(EZ(g(t,ﬂfo),wo); xg) = g(xg,z0) = 0.

uniformly with respect to z¢ € [0,a]. So, we obtain

(37) Jim n(E; (g(t, o) (t — 0)*; o) = 0,

then taking the limit n — oo in Eq.(35), and applying lemma 2 we have,
(38) lim n(E}(f.2) - f(2) = ——=f'(&) + 5/ (a).

n—00 e+1
The proof is completed. O

(&

We provide a Griiss-Voronovskaya type theorem for E (f, z) at the follow-
ing by applying the Korovkin theorem and the Voronovskaya type theorem:

Theorem 2.11. If f and g are bounded on I, differentiable in some neigh-
borhood of x and has second derivative f"(x), and ¢"(x) for some x € I,
then

(39) lim nEj(f,g;2) = zf'(2)g(x).

n—o0
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Proof. First, let’s write the first and second derivatives of f o g:
(fog) =/fg+fd.
(fog)(x) = f"(z)g(x) + 2f (x)g'(z) + " ().

Assume that

En(f,g;x) = Ey(fg; @) — By (f;2)E; (95 2).

Using the operator E’s linearity, we are able to

En(f.g9;2)
= Bi(fg:) ~ F@)o(e) ~ (o) @B (s — i) — Y s i)
o) | Ei(fi0) = @) = F@) B (s — i) - LB (- %0

—E;(f;x) [E,*l(g; r) —g(z) — ¢ ()E:(s — z;2) — 91/2(?)]5;;((3 —z)% ac)]

g B — 2 [f @) () + 2f (2)d () — g (@) By (f, )]

As a result, using Lemma 2.2, we have

lim nEy(f,g; )

= i nlB3(f0:2) ~ F@o(@)] ~ (o)) - YL,
o) [Bi(fi0) ~ £10) - P @B - i) - TP (s - o)

— B (f;x) [E:;(g; z) — g(z) — ¢'(2)EX(s — z;2) — 9”2(!9”) EX((s — 2)%; x)]

+ %E??((S — )% )| f(2)g" (@) + 2f (2)g(z) — ¢ (2) B (. 2).
O

When we write the results, we found in Theorem 2.5 and Theorem 2.10 in
the appropriate parts in the last expression, The theorem’s proof has been

finished.

3. NUMERICAL EXAMPLES

In this part, we construct error estimation tables analyzing the conver-
gence of the operator E(f,z) to a few example functions. The modulus of
continuity is used to obtain the error estimates. Maple2023™™ computing
program was used to calculate the error estimates.

Example 1 In Table 1, we demonstrate the numerical results of the

approximation of E(f,x) to the function f(z) = x2e~22.
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n | Estimation by w(f,J)

10 0.2348740864
10? 0.08950107214
10° 0.02882962304
10* 0.009133538684
10° 0.002888810576

10° 0.0009135389094
107 0.0002888869802

TABLE 1. Error of approximation of the operators E(f, )
to f(z) = 2%e™*

Example 2 In Table 2, we show the numerical results of the approx-
imation of Ej(f,z) to the function f(z) = (z — 3)(z — 3)(z — 2) for
n=123,4,5,6,7.

n | Estimation by w(f,J)
10 0.4006080608

102 0.2866236788

10° 0.1161089198

10% 0.03956970250

10° 0.01280822557

10° 0.004080151260

107 0.001293250612

TABLE 2. Error of approximation of the operators E(f, )
to f(z) = (z — %)(m - %)(m — %) forn=1,2,3,4,5,6,7

In these examples, we numerically find the approximation of E}(f,x) to
function f(z) = 2%e™2* and f(z) = (z — 2)(z — 3)(z — 2) , respectively, by
using the modulus of continuity. We observe that the amount of error when
using w gets smaller as n increases.

4. DISCUSSION AND CONCLUSION

Recently, the convergence properties of linear positive operators created
with the assistance of generating functions have been studied by many re-
searchers (cf. [9], [37],[5], [39], and [10]).

By the same motivation, we construct a Szasz type operator involving
the generating function of Adjoint-Euler polynomials were given by Na-
talini and Ricci in [25]. We investigated the approximation properties of
our operator with the help of known convergence properties such as mod-
ulus of continuity, Peetre K functional,and Korovkin’s theorem. We also
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proved Voronovskaya and Griiss-Voronovskaya type theorem for our opera-
tor. Finally, we illustrated the error of approximation of operators by using
modulus of continuity.

The use of the Euler type polynomial family, which has important results
in combinatorics and analytic number theory, to obtain positive linear oper-
ators in approximation theory has enabled this type of polynomial families
to move to a new application area.

In this study, Euler polynomials of order —1 are chosen because all terms
of these polynomials are positive for x € [0,1]. The examples in the nu-
merical results section show that the use of the operator for fractional func-
tions and polynomial functions is advantageous since the error estimation
decreases with increasing n values.

For further works, the g-analog of Adjoint-Euler polynomials can be con-
structed and investigated their convergence properties.
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