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GENERAL SUM CONNECTIVITY ENERGY OF GRAPH
M. K. NATESH, K. N. PRAKASHA, AND M. MANJUNATHA

ABSTRACT. Let G = (V, E) be a simple graph with vertex set V(G) =
{v1,v2,...,un} and edge set E(G). The general sum connectivity matrix
of a graph G whose vertex v; has degree d; is defined by the n x n
matrix whose (¢, j)—entry is equal to (d; + d;)® if the vertices v; and v,
are adjacent and 0 otherwise. The general sum connectivity energy is
the sum of absolute values of the eigenvalues of general sum connectivity
matrix. We provide lower and upper bounds for GSCE.
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1. INTRODUCTION

All graphs considered in this paper are finite, simple, undirected and

without multiple edges. For notations and terminology, see [6]. For a graph
G, we represent the degree of the vertex by d;. For the connectedness of two
vertices we use the notation v; ~ v;.
In 1978 Ivan Gutman introduced a novel graph spectral quantity which he
called it as graph energy [4]. Let G be a simple graph of order n and A(G)
be it’s adjacency matrix. The energy of a graph G is defined to be the sum
of the absolute values of its eigen values.

A topological index of graph is a numerical quantity which characterize
its topology. These are the molecular structure descriptors calculated from
a molecular graph of a chemical compound.

In 2009, Bo Zhou et al., [11] defined the sum connectivity index as

1
SC = — .
; ( Vit df)
They also introduced sum connectivity matrix and sum connectivity energy
in [10]. In 2010, Bo Zhou et al., [12] defined the general sum connectivity
index as
GSC = (d; +d;)".
i~

In [3], Hanyuan Deng et al., defined the general sum connectivity matrix

as
Z(d, + dj)('Y if v; ~ Vj,
GSCij =4 i<j
0 otherwise.

In this paper, we discuss few more properties of general sum connec-
tivity matrix and we introduce the general sum connectivity energy as the
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sum of the absolute values of the eigenvalues of the general sum connectivity

matrix.
n

GSCE(G) => |\l
i=1
(where )\; are the general sum connectivity eigenvalues.)

2. SOME BASIC PROPERTIES OF GENERAL SUM CONNECTIVITY ENERGY
OF A GRAPH

In this section, we discuss the basic properties of general sum connectivity
matrix and it’s energy.

Theorem 2.1. Let G be a graph of order n, then |A\i| = [A2| =+ = || of
and only if G = K, or G = [5]K3 (n is even).

Theorem 2.2. For a reqular graph G with regularity r, (2r)*E(G) = GSCE(G).

Proof. The general sum connectivity matrix of a regular graph G with reg-
ularity r will be having the entries 0 and (2r)%. Let ); be the eigen values
of the general sum connectivity matrix and §; are the eigenvalues of the
adjacency matrix, then (2r)*\; = j;.

Thus the proof follows. O

Theorem 2.3. Let G be a r—reqular graph (r > 3) of order n and let
Al > Ag > As... > A\, be the general sum connectivity eigen values_ of the
graph G. Then the general sum connectivity energy of complement G is

[2(n —r —1)]* <|n —r =1 D N2 - 1)

=2

Proof. The general sum connectivity matrix of the complement G of a regu-
lar graph G with regularity r will be having the entries 0 and (2(n —r — 1))“.
Let \; be the eigen values of general sum connectivity matrix, then the eigen-
values of complement G of a regular graph G are

(2(n—7r—1))* and (2(n —r — 1))*(=X\i(2r)* — 1) for i = 2,3...n.

Thus the proof follows by the definition of general sum connectivity en-
ergy. (Il

Theorem 2.4. Let G be a graph with n vertices. Then
GSCE(G) < (d; + d;)3v2n

Proof. Let A1, A2, ..., A, be the eigenvalues of GSC(G). Now by the
Cauchy-Schwartz inequality we have

() = (5) (5)

For a; =1 and b; = A,

() = () (5
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which implies that
[GSCE(G)* < 2n(d; + d;)”

and finally

GSCE(G) < (d; +d;)2V2n
which is an upper bound. O
Theorem 2.5. Let G be a graph with n vertices and if R= det GSC(G),
then

GSCE(G) > \/2(d: + ;)2 +n(n — 1)R%.

Proof. By the definition of general sum connectivity energy,
n 2
(Z Ai )
i=1
n n
PRADPY
i=1 j=1
n
(k) + T intio.
i=1

i#j
Using arithmetic mean and geometric mean inequality, we have

(GSCE(@))?

1
n(n—1)
1
_— NN | > Ai || A
e D IEG PN | [RUIEY
i#] 7]
Therefore,

1
n n(n—1)

(GSCE(G)* = Y AP 4ntm=1) [ J]IX 1A

i=1 i#j

1
n(n—1)
§:|)\ 1 4n(n —1) (HM |2(n= 1>>

= Z | \i |2 4n(n—1)Ra

i=1
= 2(d; + d;)* + n(n — 1)Rx.

Y

Thus,

GSCE(G) > \/2(d; + d;)> + n(n — 1)R?.
O

Proposition 2.6. The first three coefficients of the polynomial ¢csc(G, \)
are given as follows:

(1) ao =1,
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(1'7’) a; = 07
(iii) ay = = > _(di + d;)*.
i<j
Proof. (i) From the definition, ®ggc(G, ) = det[A\] — GSC(G)] and then
we get ag = 1 after easy calculations.

(ii) The sum of the determinants of all 1 x 1 principal submatrices of
GSC(G) is equal to the trace of GSC(G). Therefore

a; = (—1)' - trace of [GSC(G)] = 0.
(iii) Similarly we have

(—D%as = >

1<i<j<n

= D aiaj; — ajiag

1<i<j<n

= Y g — Y ajiag

1<i<j<n 1<i<j<n

= — Z(dl + dj)2a.

i<j

i Gij

aji  ajj

O

Proposition 2.7. If A1, Ae, ..., A, are the general sum connectivity eigen-
values of GSC(G), then

i)\ﬁ = 2Z(dl -+ d]‘)Qa.
i=1

1<j

Proof. We know that

n n n

2
DN = DD aa
i=1 3

Theorem 2.8. Let G be a graph with n vertices. Then

GSCE(G) < [2n) (d;+ d;)*

i<j
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Proof. Let A1, A2, ..., A, be the eigenvalues of GSC(G). Now by the
Cauchy-Schwartz inequality we have

(£) () (5+)

We let a; =1 and b; = a;. Then
n 2 n n
(Zai|> < (Z 1) <Z|Oéi|2>
i=1 i=1 i=1

[GSCE(G)? < n(2)(d; + dj)**

which implies that

and finally

GSCE(G) < [2n) (d;+d;)™
i<j

which is an upper bound. (I

3. GENERAL SUM CONNECTIVITY ENERGY OF SOME GRAPH TYPES

In this section, we calculate the general sum connectivity energy of some
well-known and frequently used graphs.

Theorem 3.1. The general sum connectivity energy of a complete graph
K, is

GSCE(K,) =2(n—1)(2n — 2)*.
Proof. Let K, be the complete graph with vertex set V = {v1, v, ..., v,},
the general sum connectivity matrix is

0 (2n —2)* (2n —2)~ . (2n —2)* (2n —2)~]
(2n —2)« 0 (2n —2)“ e (2n —2)¢ (2n—2)“
(2n —2)* (2n—2)” 0 e (2n—2)* (2n—2)°
(2n — 2)* (2n — 2)@ . . (2n ;.Q)Q O (2n — 2)@
|(2n—2)% (2n—2)* e 2n—2)* (2n—2)“ 0

Hence the characteristic equation will be
A=2n=2)M"TA=(n-1)(2n—-2)*) =0
and therefore the spectrum becomes
2n—2)* (n—1)2n—-2)“
SpeCGSC(Kn) = ( ( n— 1) ( )(1 ) > .
Therefore,
GSCE(K,) =2(n—1)(2n — 2)*.

|

Definition 3.2. [1] The cocktail party graph, denoted by K,x2, is a graph

with vertex set V. = U {u;,v;} and edge set E = {u;uj,v;v;, u;v5, viu;
1<i<j<n}.

427
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Theorem 3.3. The general sum connectivity energy of the cocktail party
graph Kpxs is
GSCE(Kpx2) = 2[4%(n — 1)**].

Proof. Let K, «2 be the cocktail party graph of order 2n with vertex set

{u1,ug, -+ ,Up,v1,02, -+ ,v,}. The general sum connectivity matrix is
o A A A 0 A A A7
A0 A A A0 A A
A A 0 A A A 0 A
A A A O A A A O
0 A A A 0 A A A
A0 A A A 0 A A
A A 0 A A A 0 A
A A A 0 A A A 0]

Where A = (4n — 4)“.
This implies that the characteristic equation becomes
AV (A (dn — 4" (A —4%(n — 1)%H) = 0.

Hence, the spectrum is

—(dn—4)* 0 4%(n—1)*H
Speccsc(Knx2)=< (nnil) n (n 1) >

Therefore,
GSCE(Kpx2) = 2[4%(n — 1)*H1].
O

Theorem 3.4. The general sum connectivity energy of the complete bipar-
tite graph Kp, p of order m x n is

GSCE(Kp ) = 2v/mn(m + n).
Proof. Let K, ,, be the complete bipartite graph of order m x n with vertex

set {u1, ug, -++, Up, V1, Vo, ---, vy }. The general sum connectivity matrix
is
[0 0 0 oo (mAn)* (mAn)® (m+n)?]
0 0 0 oo (mEn)® (m+n)* (m+n)®
0 0 0 oo (mEn)® (m+n)* (m+n)?
(m+n)* (m+n)* (m+n)* ... 0 0 0
(m+n)® (m4+n)* (m+n)* ... 0 0 0
((m+n)* (m+n)* (m+n)* .. 0 0 0 |

So the characteristic equation is

A2\ — mn(m + 1))+ Vimn(m +n)®) = 0

and hence, the spectrum will be

Speccsc(Kmn) = ( Vmn(m +n)® 0 _ Ji(m 4 n)°® )

1 m+n—2 1
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Therefore,
GSCE(Kpmn) = 2v/mn(m + n)®.
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