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RANDIC TYPE LODEG ENERGY OF A GRAPH
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ABSTRACT. The purpose of this paper is to introduce and investigate
properties of the Randi¢ type lodeg energy RLE(G) of a graph G. We
establish upper and lower bounds for RLE(G). Also the Randié type
lodeg energy for certain graphs with one edge deleted are calculated.
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1. INTRODUCTION

Consider a simple graph G with vertices {v1,va,vs, -+ ,v,}. Let 4,5 €
{1,2,--- ,n}. If two vertices v; and v; of G are adjacent, then we use the
notation v; ~ v;. For a vertex v; € V(G), the degree of v; will be denoted

by d(v;) or briefly by d;.

Basically energy of a graph was introduced by a chemist Ivan Gutman
to estimate the total m-electron energy of a molecule, [3]. We can represent
the conjugated hydrocarbons by means of a graph which is also called as
a molecular graph. We can represent the carbon atoms by vertices and a
chemical bond between two carbon atoms can be represented by an edge. In
mathematical chemistry, topological indices play an important role. There
are plenty of applications of such indices. Many physical properties and
chemical reactivities can be predicted by these molecular descriptors. There
are many topological indices such as Randi¢ index, sum-connectivity index,
atom bond connectivity index, Zagreb indices, etc. One of those numerical
descriptors, the Randié¢ type lodeg index, is the best predictor of heat ca-
pacity at constant T for octane isomers.

The Randi¢ type lodeg index of a graph G is defined by
R=R(G)=> (Ind;)(Ind;).
i~

The concept of the Randi¢ type lodeg index motivates one to associate
a symmetric square matrix RL(G) to a graph G. The Randié type lodeg
matrix RL(G) = (Sij)nxn 18, by this reason, defined as

S — lnd,-lnd]- if’UiNUj,
L 0 otherwise.
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2. THE RANDIC TYPE LODEG ENERGY OF A GRAPH

Let G be a simple, finite, undirected graph. The classical energy E(G)
is defined as the sum of absolute values of the eigenvalues of its adjacency
matrix. For more details on energy of a graph, see [3, 4].

Let RL(G) be the Randié¢ type lodeg matrix. The characteristic polyno-
mial of RL(G) will be denoted by ¢rr (G, A) and defined as

orr(G,\) = det(AM — RL(Q)).

Since the Randié¢ type lodeg matrix is real and symmetric, its eigenvalues
are real numbers and we label them in non-increasing order A\; > Ay > --- >
An. The Randi¢ type lodeg energy of G is similarly defined by

(1) RLE(G) = |\l
=1

3. SOME BASIC PROPERTIES OF RANDIC TYPE LODEG ENERGY OF A
GRAPH

In this section, we discuss the properties of Randi¢ type lodeg matrix and
Randi¢ type lodeg energy.

Proposition 3.1. The first three coefficients of the polynomial ¢rr (G, \)
are as follows:

(Z) ag = 17

(Zl) a; = 07

(ZZ’L) ag = — Zi<j(1n dl‘ In dj)z.

Proof. (i) By the definition of ¢rr (G, \) = det[]\] — RL(G)], we get ag = 1.
(74) The sum of determinants of all 1 x 1 principal submatrices of RL(G) is
equal to the trace of RL(G) implying that

a; = (=1)! x the trace of RL(G) = 0.
(#47) By the definition, we have

Az Qg4
(—D?ar= Y |0 = Y wiag; - ajiag
1<i<j<n | It 7 1<i<j<n
= > - Y ajiag
1<i<j<n 1<i<j<n
= =) (Ind;Ind;)>.
1<j

O

Proposition 3.2. If A1, Aa,--- , A\, are the Randié type lodeg eigenvalues of
RL(G), then

i AP =2) (Ind;Ind;)*.
=1

i<j
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Proof. 1t follows as

n

n n
2
DA = D) aija
i=1 i=1 j=1
n

= 2 ()’ + Y _(ai)’?

i<j i=1

= 2) (ay)’

i<j

= 2) (Ind;Ind;)>.

i<j

O

Using this result, we now obtain lower and upper bounds for the Randi¢
type lodeg energy of a graph:

Theorem 3.3. Let G be a graph with n vertices. Then

RLE(G) < [2n) (Ind;Ind;)?.
1<j

Proof. Let A1, A2, -+, A, be the eigenvalues of RL(G). By the Cauchy-

SChWartZ lrlequa/hty7 we ha\/e
=1 i=1

(5
(321 (5

Let a; = 1,b; = |\;]. Then
[RLE(G)]? <n-2) (Ind;Ind;)

n 2
(Z |/\i>
=1
i<j

IN

IN

implying that

and hence we get

RLE(G) < [2n) (Ind;Ind;)?
i<j

as an upper bound. O

Theorem 3.4. Let G be a graph with n vertices. If R = det RL(G), then

RLE(G) > [2 (Ind;Ind;)? +n(n - 1)Rx.

i<j

413
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Proof. By definition, we have

2
n
(RLE(G))* = (Z |Ai >
i=1
n n
= YOI IN
i=1 j=1
= (ZW) + 2Nl
i=1 i#j
Using arithmetic-geometric mean inequality, we have
1
1 n(n—1)
2 =1) Do il = ( TT il]
i#] i#]
Therefore,
1
n n(n—1)
[RLE@G)? = Y Nl +nln—1) [ [T Nl
i=1 i#j
1
n n n(n—1)
> Z |)\i|2 +n(n—1) (H )\i|2(n—1)>
i=1 i=1
= Y P +nn-1)Re
i=1
= 2 (Ind;Ind;)* + n(n — 1)Rx.
i<j
Thus,

RLE(G)> |2 (Ind;Ind;)? +n(n—1)Rx.

i<j
O

Let A, and A1 are the minimum and maximum values of all A.s. Then
the following results can easily be proven by means of the above results:

Theorem 3.5. For a graph G of order n,

i<j

n2
RLE(G) > J 2n ) (Ind;Ind;)? — 7=z,

Theorem 3.6. For a graph G of order n with non-zero eigenvalues, we have

2\/—)\1>\n\/2n S ic;(Ind;Ind;)?
(/\1 + )\n)z '

RLE(G) >
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Theorem 3.7. Let G be a graph of order n. Let Ay > Ao > A3 > -+ > Ay
be the eigenvalues in increasing order. Then
Al[Anln + 232, ;(Ind; Ind;)?

RLE(G) >

4. RANDIC TYPE LODEG ENERGY OF SOME STANDARD GRAPHS

Here we obtain the Randié¢ type lodeg energy for some standard graphs
such as complete graph, star graph, crown graph, cocktail party graph,
friendship graph, double star graph and complete bipartite graph etc.,

Definition 4.1. [5] Let G and H be two graphs. The join GV Hof G and
H is a graph obtained from G and H by joining each vertex of G to every
vertex in H.

Lemma 4.2. [1] Fori= 1,2, let M; be a normal matriz of order n; having
all its row sums equal to r;. Suppose 1i,0;2,0;3, ...,0in, are the eigenvalues
of M;, then for any two constants a and b, the eigenvalues of

Ml aJn Xn
M = L2
anzan MQ
are theta;; fori=1,2, j =2,3,...,n; and the two roots of the quadratic
equation (x —r1)(x —r2) — abning = 0.

Theorem 4.3. Let G1 be a r1—reqular graph of order ni and let Go be a
ro—regular graph of order na. Then the spectrum of RRR(G1V G2) consists
of In(r1 + n2)?Mi(G1) and [In(rg + n1)]?Aj(Ga) and the two roots of the
quadratic equation (z — [In(ry + n2)]*r1)(z — [In(re 4+ n1)]?re) — [In(r1 +
n2) In(rg + ny)ning)?

Proof. Since G and G4 are regular graphs, the RRR matrix of G V Gacan
be obtained as follows:

Z1(GVGy) = [In(ry + n2)]2A(G1) In(ry + no) In(re + n1)Jny xns
1 2 1n(7’1 + nz) 1n(7’2 + nl)Jme [1n(7’2 + nl)]QA(Gg)

Setting a = b = (r1 + ng — 1)(rg + n1 — 1) in 4.2, we arrive at the desired

result. O

Theorem 4.4. The Randi¢ type lodeg energy of a complete graph K, is
RLE(K,) = 2(n — 1)[In(n — 1)].

Proof. Let K,, be the complete graph with vertex set V = {v1,va, - ,v,}.
For this graph, the Randi¢ type lodeg matrix is

0 (-1 [In(n—-1% ... [In(n—1)]% [nn-—1)?]

[In(n — 1)]? 0 n(n—-1)]? ... [In(n-1)% [nn-1)]?
[In(n —1)]? [In(n —1))? 0 coo In(n—=1)? [In(n—1)2
(n(n— D) [n(n -1 [n(m -1 ... 0 In(n — 12
| [In(n — D2 [In(n—-1))? [n(n-12 ... [Inn-1)]? 0 ]

The characteristic equation then becomes
A+ [In(n = 1) (A = (n = 1)[ln(n = 1)]*) =0
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and the spectrum would be

SpeCRL(Kn) _ <_[1H’rgn—1 1)]2 (n — 1)[]1;(71 _ 1)]2) '

Therefore, RLE(K,,) = 2(n — 1)[In(n — 1)]%. O
Theorem 4.5. The Randic¢ type lodeg energy of the star graph Kin,—1 is
RLE(Kip-1)=0

Proof. Let K1 -1 be the star graph with vertex set V' = {vg,v1,- -+ ,vp—1}
with vy denotes the central vertex. In this case, all the entries of Randi¢
type lodeg matrix will be zero. Thus, the charcteristic equation is \™ = 0.
Therefore, the spectrum would be

0
Specrr (K1 n-1) = ( ) .

n
Therefore,
RLE(Kjpn—1) =0.
O
Theorem 4.6. The Randié type lodeg energy of the friendship graph Fp is

RLE(F3) = (2n — 1)(In2)? + \/(In 2)2 + 8n[In 21n 2n)2.

Proof. Let F3 be the friendship graph with 2n + 1 vertices and let vy be the
common vertex. The Randi¢ type lodeg matrix is

0 A A A A A A
A 0 [(In2)]? 0 0 0 0
A [(In2))? 0 0 0 0 0
A 0 0 0 [(In2)]? 0 0
A 0 0 [(In2))? 0 0 0
A 0 0 0 0 e 0 [(In2)]?
A 0 0 0 0 oo [(n2))? 0

where A = (In2n)(In2). The characteristic equation becomes

A = [2)D" LA+ [(In2))" (A2 — [(In 2)]*X\ — 2n[(In 2)(In 2n)]*> = 0
implying that the spectrum is
(_ n2 In2 (In2)2+4/(In2)2+8n[In2In2n]2  (In2)2—4/(In2)2+8n[In 2(In 2n)]2 ) .

2 2
n n—1 1 1

Therefore, we get

RLE(F3) = (2n — 1)(In2)? 4+ /(In 2)2 + 8n[In 21n 2n)2.

O

Theorem 4.7. The Randi¢ type lodeg energy of the cocktail party graph
Knxg 18
RLE(Kpx2) = (4n — 4)[In(2n — 2)]%



Randi¢ type Lodeg energy of a graph

Proof. Let K, x2 be the cocktail party graph of order 2n having vertex set

{uy,ug, -+ ,up,v1,v2, - ,v,}. The Randié type lodeg matrix is
o 0 B B B B B BT
0 0 B B B B B B
B B 0 0 B B B B
B B 0 0 B B B B
RL(Kan) =
B B B B 0 0 B B
B B B B 0 0 B B
B B B B B B 0 0
\B B B B B B 0 0]

where B = [In(2n — 2)]2. In that case, the characteristic equation is
AT\ 4 2[In(2n — 2)])" 1 (A = (2n — 2)[In(2n — 2)]*) = 0
and hence the spectrum becomes

Specrr (Knxa) = <(2n - 2)[11;(2” —2))? 0 —2[111752111— 2)]2> |

Therefore we arrive at the required result. (I

Theorem 4.8. The Randic¢ type lodeg energy of the double star graph Sy n
18
RLE(S,,) = 2[lnn]?.

Proof. The Randi¢ type lodeg matrix is

T 0 00 ... 0 [mn> 0 0 ... 0

0 00 ..0 0O 0 0 ...0

0 00 0 0 0 0 ... 0

0 00 0 0 0 0 0

RL(Snn) = nn)> 0 0 0 0 0 0 0
0 00 0 0 0 0 0

0 00 ..0 0O 0 0 ...0

L 0o 00 ...0 0 0 0 ... 0]

Then the characteristic equation becomes
A2\ [Inn]?) (A = [Inn)?) = 0.
Hence, the spectrum would be

0 1 2 2
SpecRL(Sn,n) _ <2n_2 [nln] [Illn] )

and therefore, we get

RLE(Sy,) = 2[Inn]?.

Theorem 4.9. The Randié type lodeg energy of a crown graph SO is
RLE(S%) = (4n — 4)[In(n — 1)]°.

417
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Proof. Let S be the crown graph of order 2n and let the vertex set of this
graph be {u1,ug, -+ ,up,v1,v2, - ,v,}. The Randié¢ type lodeg matrix of

S is
000 0 ... 0 0 A ... A A
000 ..0AGO0 .. AA
000 .. 0AA .. 0 A
000 ... 0 AA .. A0
RLS)=10 A A4 ... 40 0 ... 0 0
A0 A A0 0 ... 0 0
A A0 .. AO0O0 .. 00
A A A ...000 ..0 0

where A = [In(n — 1)]2. Therefore the characteristic equation is
A=A A+ A" A+ (n—-1D)A)A—(n—1)A) =0
implying that the spectrum is

((n —D[In(n—1)]2 —(n—1[nn—-1% [nn-1)]> —[n(n-— 1)]2>
1 1 n—1 n—1 ’

Therefore, we obtain
RLE(S%) = (4n — 4)[In(n — 1)]°.
O

Theorem 4.10. The Randié¢ type lodeg energy of the complete bipartite
graph K, , of order m x n is

RLE(Kp, ) = 2v/mn(lnm)(Inn).
Proof. Let K, , be the complete bipartite graph of order m x n with vertex

set {u1, w2, -+, Um, v1, V2, --+, Vn}t. The matrix is
[ 0 0 0 (Inm)(Inn) (Inm)(Inn) (Inm)(nn)]
0 0 0 .o. (Inm)(Inn) (Inm)(lnn) (Inm)(Inn)
0 0 0 (Inm)(Inn) (Inm)(Inn) (Inm)(lnn)
(In mj(ln n) (ln m).(ln n) (In mj(ln n) . 0 0 0
(Inm)(Inn) (Inm)(Inn) (Inm)(Inn) 0 0 0
|(Inm)(Inn) (Inm)(nn) (nm)(lnn) ... 0 0 0

So the characteristic equation is
A2~ /mn(Inm) (Inn)) (A 4+ vmn(Inm)(Inn)) =0
and hence, the spectrum will be
_( vmn(lnm)(lnn) 0 —vmn(lnm)(lnn)
Specrr(Kmn) = ( 1 m4n—2 1 ’

Therefore,
RLE(Kp ) = 2v/mn(lnm)(lnn).
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5. RANDIC TYPE LODEG ENERGY OF COMPLEMENTS

In this section, we calculated the Randié¢ type lodeg energy for comple-
ments, k-complements and k(7)-complements, which are defined in [7]. Let
G be a graph and P, = {V1,Va,---,Vi} be a partition of its vertex set V.
Then the k-complement of G is obtained as follows: For all V; and Vj in Py,
i # j remove the edges between V; and V; and add the edges between the

vertices of V; and V; which are not in G and is denoted by (G). Similarly,
the k(i)-complement of G is obtained as follows: For each set V. in Py, re-
move the edges of G joining the vertices within V. and add the edges of G
(complement of () joining the vertices of V;., and is denoted by (G-

Theorem 5.1. The Randi¢ type lodeg energy of the complement K,, of the

complete graph K, is

RLE(K,) = 0.

Proof. Let K, be the complete graph with vertex set V = {v1,va, -+ ,v,}.
The Randi¢ type lodeg connectivity matrix of the complement of the com-

plete graph K, is
RL(K,) = [0]

nxn '

Clearly, the characteristic equation is A™ = 0 implying

RLE(K,) =0.

O

Theorem 5.2. The Randi¢ type lodeg energy of the complement K1 p—1 of

the star graph K1 ,—1 s

RLE(Ki, 1) = (2n — 4)[In(n — 2)].

Proof. Let Ki,—1 be the complement of the star graph with vertex set
The Randi¢ type lodeg

V = {vg,v1, -+ ,vn—1} where vy is the central.
matrix is

[0 0 0

0 0 [In(n —2))2

0 [In(n—2))? 0
RL(KLnfl) = . . .

0 [n(n—2)2 [n(n—2)?
10 [In(n —2)]? [In(n —2))?

The corresponding characteristic equation is

A+ [In(n — 212" 2\ — (n — 2)[In(n — 2)]?) = 0

and therefore the spectrum is

Specpr(K1n-1) = ( n_9 1

0
[In(n — 2)]2
[In(n — 2)]?

0
[In(n — 2)]?

0
[In(n — 2)]?
[In(n — 2)]?

In(n — 2)?

0

—n(n—-2)*> 0 (n—2)n(n— 2)]2> .

Therefore the result follows.

1

O

Theorem 5.3. The Randié¢ type lodeg energy of the complement K,xa of

the cocktail party graph Kpxo of order 2n is RLE(K,x2) = 0.

419
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Proof. Let K, x2 be the cocktail party graph of order 2n having the vertex
set {u,ug, - ,Up,v1,v2, -+ ,v,}. The corresponding Randié type lodeg
matrix is

RL(K,x2) = [0}

and the characteristic equation becomes

A" =0.

nxn

implying that the spectrum would be

Specrr(Knxa) = (O)

n

Therefore,

RLE(Knx2) = 0.
O

Theorem 5.4. The Randié¢ type lodeg energy of 2-complement of cocktail
party graph K, xo is

RLE((Knx2)(2)) = (4n — 4)[Inn]?.

Proof. Consider the 2-complement Knxa,, of the cocktail party graph K «2 @
The Randi¢ type lodeg matrix is

Rl =l ({72 (7 e ).

The characteristic polynomial is
AL 42 )\ — (n — 2)[Inn)?)(\ — n[lnn)?) = 0
and therefore, the Randi¢ type lodeg spectra is

Spec((Knxz)@) = (—i[liufp o (n— Qi[lnn]Q n[lrin]Z)

implying the acquired result. 0

6. RANDIC TYPE LODEG ENERGY OF GRAPHS WITH ONE EDGE DELETED

In this section, we obtain the Randi¢ type lodeg energy for certain graphs
with one edge deleted.

Theorem 6.1. Let e be an edge of the complete graph K,. Then
RLE(K, —e¢) = ((n —3)[n(n — 1)]? + [In(n — 1)]C)
where C = /(n — 3)2[In(n — 1)]2 + (2n — 4)4[In(n — 2)]2

Proof. The Randi¢ type lodeg matrix for K, — e is

0 0 A . A A

0 0 Inn—1)In(n—2) ... In(n—1)In(n—2) In(n—1)In(n —2)
A A 0 e [In(n — 1)]? [In(n — 1)]2

1;1 A [In(n — 1)]2 . 0 [In(n — 1))?
A A [In(n — 1)]? e [In(n — 1)]? 0 ]
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where A =1In(n — 1) In(n — 2). Therefore the characteristic equation is
A+ [In(n — 1)) (A2 = (n = 3)[In(n — 1)°A — (2n — 4)(In(n — 1) In(n — 2))*) =0
implying that the spectrum would be

([ln(n _ 1)]2 O ln(n _ 1) (n—3)[1n(2n—1)]+6' ln(n _ 1) (n—3)[ln(2n—1)]—6') '

n—3 1 1 1
Therefore, RLE(K, —€) = ((n — 3)[In(n — 1)]? + [In(n — 1)]C)
where C' = /(n — 3)2[In(n — 1)]2 + (2n — 4)4[In(n — 2)]2. O

Theorem 6.2. Let e be an edge of the complete bipartite graph Ky, . The
Randic¢ type lodeg energy of Ky, n — € is

RLE(K,, —e€)=2(lnn)B
where A= (n—1)Inn and B = \/(n — 1)2[lnn]2 + 4(n — 1)[In(n — 1)]2.

Proof. The Randi¢ type lodeg matrix for K, ,, — e is

0 0 0 ... 0 C C
0 0 0 ... C [nn)? [Inn)?
0 0 0 ... C [Inn)? [Inn)?
0 C c ... 0 0 0
C [mn)®> [nn?2 ... 0 0 0
C [nn)? [Inn® ... 0 0 0

where C' = In(n) In(n — 1). Then the characteristic equation is
A2 4 (n—1) [Inn]2A— (n—1)[C)?) (N2 = (n—1)[Inn)*A— (n—1)[C]*) =0
and hence, the spectrum would be
LA+ B) Br(-A+B) B2(A-B) B2(-A-B) 0
1 1 1 1 2n —4
where A = (n — 1)lnn and B = /(n — 1)2[lnn]2 + 4(n — 1)[In(n — 1)]2.
Therefore,

RLE(Ky, —e€) =2(lnn)B.

The following result can easily be proven as above:

Lemma 6.3. Let K1 ,_1 be the star graph with n vertices and let e be an
edge of it. Then RLE(K; -1 —e€) = RLE(K n—2) forn > 3.
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